Foundation model for efficient biological discovery in single-molecule time traces

IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Jieming Li, Leyou Zhang, Alexander Johnson-Buck, Nils G. Walter
{"title":"Foundation model for efficient biological discovery in single-molecule time traces","authors":"Jieming Li, Leyou Zhang, Alexander Johnson-Buck, Nils G. Walter","doi":"10.1038/s41592-025-02839-4","DOIUrl":null,"url":null,"abstract":"Single-molecule fluorescence microscopy (SMFM) can reveal important biological insights. However, uncovering rare but critical intermediates often demands manual inspection of time traces and iterative ad hoc approaches. To facilitate systematic and efficient discovery from SMFM time traces, we introduce META-SiM, a transformer-based foundation model pretrained on diverse SMFM analysis tasks. META-SiM rivals best-in-class algorithms on a broad range of tasks including trace classification, segmentation, idealization and stepwise photobleaching analysis. Additionally, the model produces embeddings that encapsulate detailed information about each trace, which the web-based META-SiM Projector ( https://www.simol-projector.org ) casts into lower-dimensional space for efficient whole-dataset visualization, labeling, comparison and sharing. Combining this Projector with the objective metric of local Shannon entropy enables rapid identification of condition-specific behaviors, even if rare or subtle. Applying META-SiM to an existing single-molecule Förster resonance energy transfer dataset, we discover a previously undetected intermediate state in pre-mRNA splicing. META-SiM removes bottlenecks, improves objectivity and both systematizes and accelerates biological discovery in single-molecule data. META-SiM brings foundation model power to single-molecule time traces, excelling across diverse analysis tasks. Paired with the web-based META-SiM Projector and entropy mapping, it rapidly reveals hidden molecular behaviors inaccessible by other means.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 10","pages":"2149-2160"},"PeriodicalIF":32.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-025-02839-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-molecule fluorescence microscopy (SMFM) can reveal important biological insights. However, uncovering rare but critical intermediates often demands manual inspection of time traces and iterative ad hoc approaches. To facilitate systematic and efficient discovery from SMFM time traces, we introduce META-SiM, a transformer-based foundation model pretrained on diverse SMFM analysis tasks. META-SiM rivals best-in-class algorithms on a broad range of tasks including trace classification, segmentation, idealization and stepwise photobleaching analysis. Additionally, the model produces embeddings that encapsulate detailed information about each trace, which the web-based META-SiM Projector ( https://www.simol-projector.org ) casts into lower-dimensional space for efficient whole-dataset visualization, labeling, comparison and sharing. Combining this Projector with the objective metric of local Shannon entropy enables rapid identification of condition-specific behaviors, even if rare or subtle. Applying META-SiM to an existing single-molecule Förster resonance energy transfer dataset, we discover a previously undetected intermediate state in pre-mRNA splicing. META-SiM removes bottlenecks, improves objectivity and both systematizes and accelerates biological discovery in single-molecule data. META-SiM brings foundation model power to single-molecule time traces, excelling across diverse analysis tasks. Paired with the web-based META-SiM Projector and entropy mapping, it rapidly reveals hidden molecular behaviors inaccessible by other means.

Abstract Image

在单分子时间轨迹中有效发现生物的基础模型。
单分子荧光显微镜(SMFM)可以揭示重要的生物学见解。然而,发现罕见但关键的中间产物通常需要人工检查时间轨迹和迭代的特别方法。为了方便系统和有效地从SMFM时间轨迹中发现,我们引入了META-SiM,这是一种基于变压器的基础模型,对各种SMFM分析任务进行了预训练。META-SiM在包括痕量分类、分割、理想化和逐步光漂白分析在内的广泛任务上与同类最佳算法相竞争。此外,该模型产生嵌入,封装有关每个痕迹的详细信息,基于web的META-SiM投影仪(https://www.simol-projector.org)将其投射到较低维度空间,以实现高效的整个数据集可视化、标记、比较和共享。将投影仪与局部香农熵的客观度量相结合,可以快速识别特定条件的行为,即使是罕见或微妙的行为。将META-SiM应用于现有的单分子Förster共振能量转移数据集,我们发现了pre-mRNA剪接中以前未检测到的中间状态。META-SiM消除了瓶颈,提高了客观性,同时系统化和加速了单分子数据的生物发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信