{"title":"Brain age as an accurate biomarker of preclinical cognitive decline: evidence from a 12-year longitudinal study.","authors":"Odelia Elkana, Iman Beheshti","doi":"10.1007/s00415-025-13414-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive decline in older adults, particularly during the preclinical stages of Alzheimer's disease (AD), presents a critical opportunity for early detection and intervention. While T1-weighted MRI is widely used in AD research, its capacity to identify early vulnerability and monitor longitudinal progression remains incompletely characterized. We analyzed longitudinal T1-weighted MRI data from 224 cognitively unimpaired older adults followed for up to 12 years. Participants were stratified by clinical outcome into converters to mild cognitive impairment (HC-converters, n = 112) and stable controls (HC-stable, n = 112). Groups were matched at baseline for age (mean ~ 74-75 years), education (~ 16.4 years), and cognitive scores (MMSE ≈ 29; CDR-SB ≈ 0.04). Four MRI-derived biomarkers were examined: brain-predicted age difference (brain-PAD), mean cortical thickness, AD-cortical signature, and hippocampal volume. Brain-PAD showed the strongest baseline association with future conversion (β = 1.25, t = 3.52, p = 0.0009) and highest classification accuracy (AUC = 0.66; sensitivity = 62%, and specificity = 67%). Longitudinal mixed-effects models focusing on the group × time interaction revealed a significant positive slope in brain-PAD for converters (β = 0.0079, p = 0.003) and a non-significant trend in stable controls (β = 0.0047, p = 0.075), indicating incipient divergence in brain aging trajectories during the preclinical window. Hippocampal volume and AD-cortical signature declined similarly in both groups. The mean cortical thickness had limited discriminative or dynamic utility. These findings support brain-PAD, derived from routine T1-weighted MRI using machine learning, as a sensitive, performance-independent biomarker for early risk stratification and monitoring of cognitive aging trajectories.</p>","PeriodicalId":16558,"journal":{"name":"Journal of Neurology","volume":"272 10","pages":"672"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00415-025-13414-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cognitive decline in older adults, particularly during the preclinical stages of Alzheimer's disease (AD), presents a critical opportunity for early detection and intervention. While T1-weighted MRI is widely used in AD research, its capacity to identify early vulnerability and monitor longitudinal progression remains incompletely characterized. We analyzed longitudinal T1-weighted MRI data from 224 cognitively unimpaired older adults followed for up to 12 years. Participants were stratified by clinical outcome into converters to mild cognitive impairment (HC-converters, n = 112) and stable controls (HC-stable, n = 112). Groups were matched at baseline for age (mean ~ 74-75 years), education (~ 16.4 years), and cognitive scores (MMSE ≈ 29; CDR-SB ≈ 0.04). Four MRI-derived biomarkers were examined: brain-predicted age difference (brain-PAD), mean cortical thickness, AD-cortical signature, and hippocampal volume. Brain-PAD showed the strongest baseline association with future conversion (β = 1.25, t = 3.52, p = 0.0009) and highest classification accuracy (AUC = 0.66; sensitivity = 62%, and specificity = 67%). Longitudinal mixed-effects models focusing on the group × time interaction revealed a significant positive slope in brain-PAD for converters (β = 0.0079, p = 0.003) and a non-significant trend in stable controls (β = 0.0047, p = 0.075), indicating incipient divergence in brain aging trajectories during the preclinical window. Hippocampal volume and AD-cortical signature declined similarly in both groups. The mean cortical thickness had limited discriminative or dynamic utility. These findings support brain-PAD, derived from routine T1-weighted MRI using machine learning, as a sensitive, performance-independent biomarker for early risk stratification and monitoring of cognitive aging trajectories.
期刊介绍:
The Journal of Neurology is an international peer-reviewed journal which provides a source for publishing original communications and reviews on clinical neurology covering the whole field.
In addition, Letters to the Editors serve as a forum for clinical cases and the exchange of ideas which highlight important new findings. A section on Neurological progress serves to summarise the major findings in certain fields of neurology. Commentaries on new developments in clinical neuroscience, which may be commissioned or submitted, are published as editorials.
Every neurologist interested in the current diagnosis and treatment of neurological disorders needs access to the information contained in this valuable journal.