{"title":"Development and utilization of a novel nanoantimicrobial suture for surgery: An in vivo and mechanical study.","authors":"Yeliz Kılınç, İnci Rana Karaca, Aysel Uğur, Sibel Elif Gültekin, İpek Atak Seçen, Nurdan Saraç, Leyla Arslan Bozdağ, Tuba Baygar","doi":"10.1177/08853282251383088","DOIUrl":null,"url":null,"abstract":"<p><p>Development of surgical sutures coated with antimicrobial agents is a promising strategy to minimize surgical site infection (SSI) and improve wound healing. The antimicrobial features of <i>Hypericum Perforatum</i> and biogenic silver nanoparticles (AgNPs) have arised an increasing demand for processing surgical sutures. Herein the results of the animal experiments and mechanical tests of a novel antimicrobial silk suture coated with <i>H. perforatum</i> extract (Hp) and biogenic AgNPs (Hp-AgNP) are reported. The study used in vivo histological, histochemical, and immunohistochemical techniques to illustrate the variations in inflammatory response, re-epithelialization, and collagenization of the coated silk sutures in a rat buccal mucosa incision model. Diameter, knot-pull tensile strength, knot security, tie-down, and needle attachment tests were carried out for evaluating the effects of the coating process on mechanical and handling properties. Histopathological and immunohistochemical evaluations revealed progressive healing in all groups, with variations in wound closure, inflammation, and cytokine expression. Hp-AgNP-coated sutures showed significant improvements in re-epithelialization and reduced TNF-α and IL-6 levels over time, highlighting their potential benefits in enhancing wound healing compared to other materials. The coating process had a remarkable effect on the mechanical and handling properties. Coated sutures exhibited higher values than control groups. Suture diameter, knot-pull tensile strength and knot security revealed the highest values for Hp-AgNP-coated suture. The Hp-AgNP coating on the silk suture significantly improves wound healing, mechanical and handling properties. This implies that it has the potential to be a feasible substitute for commercially available silk sutures in surgical interventions. (Scheme 1).</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251383088"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251383088","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Development of surgical sutures coated with antimicrobial agents is a promising strategy to minimize surgical site infection (SSI) and improve wound healing. The antimicrobial features of Hypericum Perforatum and biogenic silver nanoparticles (AgNPs) have arised an increasing demand for processing surgical sutures. Herein the results of the animal experiments and mechanical tests of a novel antimicrobial silk suture coated with H. perforatum extract (Hp) and biogenic AgNPs (Hp-AgNP) are reported. The study used in vivo histological, histochemical, and immunohistochemical techniques to illustrate the variations in inflammatory response, re-epithelialization, and collagenization of the coated silk sutures in a rat buccal mucosa incision model. Diameter, knot-pull tensile strength, knot security, tie-down, and needle attachment tests were carried out for evaluating the effects of the coating process on mechanical and handling properties. Histopathological and immunohistochemical evaluations revealed progressive healing in all groups, with variations in wound closure, inflammation, and cytokine expression. Hp-AgNP-coated sutures showed significant improvements in re-epithelialization and reduced TNF-α and IL-6 levels over time, highlighting their potential benefits in enhancing wound healing compared to other materials. The coating process had a remarkable effect on the mechanical and handling properties. Coated sutures exhibited higher values than control groups. Suture diameter, knot-pull tensile strength and knot security revealed the highest values for Hp-AgNP-coated suture. The Hp-AgNP coating on the silk suture significantly improves wound healing, mechanical and handling properties. This implies that it has the potential to be a feasible substitute for commercially available silk sutures in surgical interventions. (Scheme 1).
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.