{"title":"The role of dietary fibre in lung inflammation: microbiota, metabolites, and immune crosstalk.","authors":"Aishat Azeez, John A Baugh","doi":"10.1007/s00011-025-02098-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lung disease remains a leading cause of global morbidity and mortality, with prevalence strongly influenced by lifestyle factors, including dietary patterns such as the Western diet. Chronic lung inflammation, driven by dysregulated immune responses, is a hallmark of many pulmonary conditions and exacerbates disease progression and severity Emerging evidence highlights potentially critical role of for Dietary fibre and it's metabolites particularly short chain fatty acids (SCFAs), acetate, butyrate and propionate, in modulating the gut-lung axis and regulating pulmonary immune response.</p><p><strong>Objective: </strong>This review summarizes current evidence on how dietary fibre and SCFAs influence pulmonary immunity and inflammation through systemic and local mechanisms.MethodsLiterature on dietary fibre intake, SCFA production, and immune regulation in the context of lung disease was reviewed to identify key effects and mechanistic insights.</p><p><strong>Findings: </strong>SCFAs, including acetate, butyrate, and propionate, are produced by gut microbial fermentation of fibre and act via G-protein coupled receptor signalling and histone deacetylase inhibition. These metabolites modulate epithelial and immune cell function, reduce inflammation, and enhance lung immune protection. Beyond local effects, SCFAs influence hematopoietic cells in the bone marrow, altering their recruitment and activity in the lung.</p><p><strong>Conclusions: </strong>Dietary fibre intake and SCFA-mediated gut-lung immune regulation represent a promising area for therapeutic development. A deeper understanding of these pathways may support novel strategies for the prevention and treatment of respiratory diseases.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":"74 1","pages":"135"},"PeriodicalIF":5.4000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00011-025-02098-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Lung disease remains a leading cause of global morbidity and mortality, with prevalence strongly influenced by lifestyle factors, including dietary patterns such as the Western diet. Chronic lung inflammation, driven by dysregulated immune responses, is a hallmark of many pulmonary conditions and exacerbates disease progression and severity Emerging evidence highlights potentially critical role of for Dietary fibre and it's metabolites particularly short chain fatty acids (SCFAs), acetate, butyrate and propionate, in modulating the gut-lung axis and regulating pulmonary immune response.
Objective: This review summarizes current evidence on how dietary fibre and SCFAs influence pulmonary immunity and inflammation through systemic and local mechanisms.MethodsLiterature on dietary fibre intake, SCFA production, and immune regulation in the context of lung disease was reviewed to identify key effects and mechanistic insights.
Findings: SCFAs, including acetate, butyrate, and propionate, are produced by gut microbial fermentation of fibre and act via G-protein coupled receptor signalling and histone deacetylase inhibition. These metabolites modulate epithelial and immune cell function, reduce inflammation, and enhance lung immune protection. Beyond local effects, SCFAs influence hematopoietic cells in the bone marrow, altering their recruitment and activity in the lung.
Conclusions: Dietary fibre intake and SCFA-mediated gut-lung immune regulation represent a promising area for therapeutic development. A deeper understanding of these pathways may support novel strategies for the prevention and treatment of respiratory diseases.
期刊介绍:
Inflammation Research (IR) publishes peer-reviewed papers on all aspects of inflammation and related fields including histopathology, immunological mechanisms, gene expression, mediators, experimental models, clinical investigations and the effect of drugs. Related fields are broadly defined and include for instance, allergy and asthma, shock, pain, joint damage, skin disease as well as clinical trials of relevant drugs.