Chengzhang Li, Yiting Ji, Xinying Li, Jingting Cai, Juntao Ye, Yuqi Wu, Qinghong Liao, Ziyan Wang, Edmond Sanganyado, Ping Li, Yajing Sun, Bo Liang, Wenhua Liu
{"title":"Vibrio spp.: a potential critical pathogen for mammals with implications beyond marine aquaculture.","authors":"Chengzhang Li, Yiting Ji, Xinying Li, Jingting Cai, Juntao Ye, Yuqi Wu, Qinghong Liao, Ziyan Wang, Edmond Sanganyado, Ping Li, Yajing Sun, Bo Liang, Wenhua Liu","doi":"10.1186/s12866-025-04284-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Species-specific or health status specific microbiome composition of cetaceans is still poorly classified due to the limited samples. Despite a partial identification of the gut microbiota of melon-headed whales (Peponocephala electra), comparative analyses across anatomical systems are lacking. This study provides the first comprehensive analysis of the microbial communities habiting nine body sites - oral cavity, esophagus, foregut, midgut, hindgut, blowhole, and skin wounds (left anterior, dorsal fin, tail) - in a stranded melon-headed whale.</p><p><strong>Results: </strong>By 16 S rRNA gene sequencing, a decrease in microbial richness was observed from the oral cavity to the hindgut, accompanied by compositional shifts from Fusobacterium-dominated oral/esophageal niches to Vibrio-enriched gastrointestinal regions (21.81% Vibrio, 21.19% Fusobacterium, 12.50% Actinobacillus). The respiratory tract microbiota underwent a significant shift and was dominated by Ostreibacterium (57.5%), Helcococcus (6.59%), and Tenacibaculum (4.12%). Skin wounds showed environmental similarities, with Vibrio (47.84%), Pseudoalteromonas (17.84%), and Psychrobacter (12.36%). Pan-microbiome screening identified seven Vibrio species (V. alginolyticus, V. cidicii, V. cyclitrophicus, V. navarrensis, V. parahaemolyticus, V. salilacus, and V. splendidus) across all niches, along with V. cholerae in non-respiratory samples. Notably, V. profundi was exclusively localized to anterior and dorsal fin wounds. Functional profiling revealed enrichment of Vibrio-linked pathogenesis pathways (infection, pathogenic cycle) and metabolic modules that were correlated with immunocompromised states.</p><p><strong>Conclusions: </strong>This study revealed significant bidirectional environment-host microbiome exchange dynamics across cetacean mucosal surfaces. Notably, Vibrio spp. emerged as the dominant genus in both gastrointestinal and cutaneous wound microbiomes, highlighting: (1) potential zoonotic transmission risks from pathogenic Vibrio strains, and (2) the critical need for habitat-specific microbial surveillance to inform marine mammal conservation strategies.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"598"},"PeriodicalIF":4.2000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492875/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-04284-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Species-specific or health status specific microbiome composition of cetaceans is still poorly classified due to the limited samples. Despite a partial identification of the gut microbiota of melon-headed whales (Peponocephala electra), comparative analyses across anatomical systems are lacking. This study provides the first comprehensive analysis of the microbial communities habiting nine body sites - oral cavity, esophagus, foregut, midgut, hindgut, blowhole, and skin wounds (left anterior, dorsal fin, tail) - in a stranded melon-headed whale.
Results: By 16 S rRNA gene sequencing, a decrease in microbial richness was observed from the oral cavity to the hindgut, accompanied by compositional shifts from Fusobacterium-dominated oral/esophageal niches to Vibrio-enriched gastrointestinal regions (21.81% Vibrio, 21.19% Fusobacterium, 12.50% Actinobacillus). The respiratory tract microbiota underwent a significant shift and was dominated by Ostreibacterium (57.5%), Helcococcus (6.59%), and Tenacibaculum (4.12%). Skin wounds showed environmental similarities, with Vibrio (47.84%), Pseudoalteromonas (17.84%), and Psychrobacter (12.36%). Pan-microbiome screening identified seven Vibrio species (V. alginolyticus, V. cidicii, V. cyclitrophicus, V. navarrensis, V. parahaemolyticus, V. salilacus, and V. splendidus) across all niches, along with V. cholerae in non-respiratory samples. Notably, V. profundi was exclusively localized to anterior and dorsal fin wounds. Functional profiling revealed enrichment of Vibrio-linked pathogenesis pathways (infection, pathogenic cycle) and metabolic modules that were correlated with immunocompromised states.
Conclusions: This study revealed significant bidirectional environment-host microbiome exchange dynamics across cetacean mucosal surfaces. Notably, Vibrio spp. emerged as the dominant genus in both gastrointestinal and cutaneous wound microbiomes, highlighting: (1) potential zoonotic transmission risks from pathogenic Vibrio strains, and (2) the critical need for habitat-specific microbial surveillance to inform marine mammal conservation strategies.
期刊介绍:
BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.