Effects of different land use on functional genes of soil microbial carbon and phosphorus cycles in the desert steppe zone of the Loess Plateau.

IF 4.2 2区 生物学 Q2 MICROBIOLOGY
Weijie Jin, Yubao Zhang, Xuesi Su, Zhongkui Xie, Ruoyu Wang, Yajun Wang, Yang Qiu, Yuhui He
{"title":"Effects of different land use on functional genes of soil microbial carbon and phosphorus cycles in the desert steppe zone of the Loess Plateau.","authors":"Weijie Jin, Yubao Zhang, Xuesi Su, Zhongkui Xie, Ruoyu Wang, Yajun Wang, Yang Qiu, Yuhui He","doi":"10.1186/s12866-025-04305-9","DOIUrl":null,"url":null,"abstract":"<p><p>Desert grassland ecosystems on China's Loess Plateau are characterized by diverse land use types and varying human disturbances. We aimed to evaluate how land use influences soil microbial communities and functional genes related to carbon (C) and phosphorus (P) cycling. To do this, we selected five representative land use types: natural grassland, 20-year abandoned farmland, 12-year alfalfa grassland, 5-year Lanzhou lily farmland, and 17-year Platycladus orientalis forest. High-throughput metagenomic sequencing and soil physicochemical analyses were conducted. Proteobacteria dominated the nutrient-rich lily soil, while Actinobacteria were more abundant in the other soils. Available phosphorus (AP) had the strongest influence on microbial community structure and gene composition (p < 0.01). The relative abundance of ppdK, rpiB, glpX, and epi (C fixation genes), and purS (purine metabolism) was significantly higher in forest soil than in abandoned farmland (p < 0.05). Similarly, forest soil showed elevated levels of mttB and acs (methanogenesis), sdhA (TCA cycle), pstS (P transport), and pps (pyruvate metabolism) compared to alfalfa soil. Lily soil exhibited significantly higher abundance of acr genes (involved in the hydroxypropionate-hydroxybutylate cycle) and phnE (an ATP-binding cassette transporter) than natural grassland and alfalfa soils (p < 0.05). Microbial networks involved in C and P cycling were simpler but more functionally specialized in forest soil. Positive microbial interactions related to C and P cycling were strongest in lily soil. These findings provide important insights into soil microbial functional adaptation and offer a foundation for sustainable land use management on the Loess Plateau.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"607"},"PeriodicalIF":4.2000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492547/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-04305-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Desert grassland ecosystems on China's Loess Plateau are characterized by diverse land use types and varying human disturbances. We aimed to evaluate how land use influences soil microbial communities and functional genes related to carbon (C) and phosphorus (P) cycling. To do this, we selected five representative land use types: natural grassland, 20-year abandoned farmland, 12-year alfalfa grassland, 5-year Lanzhou lily farmland, and 17-year Platycladus orientalis forest. High-throughput metagenomic sequencing and soil physicochemical analyses were conducted. Proteobacteria dominated the nutrient-rich lily soil, while Actinobacteria were more abundant in the other soils. Available phosphorus (AP) had the strongest influence on microbial community structure and gene composition (p < 0.01). The relative abundance of ppdK, rpiB, glpX, and epi (C fixation genes), and purS (purine metabolism) was significantly higher in forest soil than in abandoned farmland (p < 0.05). Similarly, forest soil showed elevated levels of mttB and acs (methanogenesis), sdhA (TCA cycle), pstS (P transport), and pps (pyruvate metabolism) compared to alfalfa soil. Lily soil exhibited significantly higher abundance of acr genes (involved in the hydroxypropionate-hydroxybutylate cycle) and phnE (an ATP-binding cassette transporter) than natural grassland and alfalfa soils (p < 0.05). Microbial networks involved in C and P cycling were simpler but more functionally specialized in forest soil. Positive microbial interactions related to C and P cycling were strongest in lily soil. These findings provide important insights into soil microbial functional adaptation and offer a foundation for sustainable land use management on the Loess Plateau.

不同土地利用方式对黄土高原荒漠草原土壤微生物碳磷循环功能基因的影响
黄土高原荒漠草地生态系统具有土地利用类型多样、人为干扰变化多端的特点。我们旨在评估土地利用如何影响土壤微生物群落和与碳(C)和磷(P)循环相关的功能基因。为此,我们选择了5种具有代表性的土地利用类型:天然草地、20年撂荒农田、12年紫花苜蓿草地、5年兰州百合田和17年侧柏林。进行了高通量宏基因组测序和土壤理化分析。营养丰富的百合土壤以变形杆菌为主,其他土壤以放线菌为主。速效磷(AP)对微生物群落结构和基因组成的影响最大
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Microbiology
BMC Microbiology 生物-微生物学
CiteScore
7.20
自引率
0.00%
发文量
280
审稿时长
3 months
期刊介绍: BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信