Laid Latreche, Hamza Abbassa, El Habib Abbes, Abdelkader Boukortt
{"title":"First-Principles Investigation of the Influence of Disorder on Electronic and Magnetic Properties in CoFeMnAl Quaternary Heusler Alloys","authors":"Laid Latreche, Hamza Abbassa, El Habib Abbes, Abdelkader Boukortt","doi":"10.1007/s10948-025-07048-w","DOIUrl":null,"url":null,"abstract":"<div><p>First-principles calculations, combined with the supercell approach, are employed to investigate the effects of atomic disorder on the electronic properties of the CoFeMnAl quaternary Heusler alloy (LiMgPdSn-type). The ordered alloy is a half-metallic ferromagnet; its moment obeys the Slater-Pauling rule with <i>T</i><sub>C</sub> > 300 K. We analyse twelve antisite and six swap disorder configurations. Calculations show that the Fe<sub>Mn</sub> antisite is the most energetically favourable defect (−1.25 eV), followed by the FeCo antisite and the MnAl swap. The disorder generally contracts the spin-down gap. Half-metallicity is largely preserved but completely lost for Co<sub>Al</sub>, Co<sub>Mn</sub> antisite and CoAl, CoMn swap defects. Disorder has a significant effect on the magnetic moment and Curie temperature. The Fe<sub>Mn</sub> antisite gives 3.12 µ<sub>B</sub>, which is very close to the experimental value of 3.10 µ<sub>B</sub>. This study demonstrates the importance of considering disorder when predicting the properties of Heusler alloys.\n</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-025-07048-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
First-principles calculations, combined with the supercell approach, are employed to investigate the effects of atomic disorder on the electronic properties of the CoFeMnAl quaternary Heusler alloy (LiMgPdSn-type). The ordered alloy is a half-metallic ferromagnet; its moment obeys the Slater-Pauling rule with TC > 300 K. We analyse twelve antisite and six swap disorder configurations. Calculations show that the FeMn antisite is the most energetically favourable defect (−1.25 eV), followed by the FeCo antisite and the MnAl swap. The disorder generally contracts the spin-down gap. Half-metallicity is largely preserved but completely lost for CoAl, CoMn antisite and CoAl, CoMn swap defects. Disorder has a significant effect on the magnetic moment and Curie temperature. The FeMn antisite gives 3.12 µB, which is very close to the experimental value of 3.10 µB. This study demonstrates the importance of considering disorder when predicting the properties of Heusler alloys.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.