A Periodic Kingman Model for the Balance Between Mutation and Selection.

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Camille Coron, Olivier Hénard
{"title":"A Periodic Kingman Model for the Balance Between Mutation and Selection.","authors":"Camille Coron,&nbsp;Olivier Hénard","doi":"10.1007/s10955-025-03524-8","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a periodic extension of the Kingman model [11] for the balance between selection and mutation in large populations. In its original form, the model describes a population’s fitness distribution by a probability measure on the unit interval evolving through a simple discrete-time dynamical system, in which selection operates via size-biasing, and the mutation distribution remains constant along time. We allow the mutation environment to vary periodically over time and prove the convergence of the fitness distribution along subsequences; crucially, we derive an explicit criterion, phrased in term of the Perron eigenvalue of a characteristic matrix, to determine whether an atom emerges at the largest fitness in the limit, a phenomenon called condensation. Our results provide new insights on the role of periodic mutation effects in population Darwinian evolution.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 10","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03524-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a periodic extension of the Kingman model [11] for the balance between selection and mutation in large populations. In its original form, the model describes a population’s fitness distribution by a probability measure on the unit interval evolving through a simple discrete-time dynamical system, in which selection operates via size-biasing, and the mutation distribution remains constant along time. We allow the mutation environment to vary periodically over time and prove the convergence of the fitness distribution along subsequences; crucially, we derive an explicit criterion, phrased in term of the Perron eigenvalue of a characteristic matrix, to determine whether an atom emerges at the largest fitness in the limit, a phenomenon called condensation. Our results provide new insights on the role of periodic mutation effects in population Darwinian evolution.

突变与选择平衡的周期Kingman模型。
我们引入了Kingman模型[11]的周期性扩展,用于大种群中选择和突变之间的平衡。该模型的原始形式是通过一个简单的离散动力系统在单位区间上的概率度量来描述种群的适应度分布,其中选择通过大小偏倚进行,突变分布随时间保持不变。我们允许突变环境随时间周期性变化,并证明适应度分布沿子序列的收敛性;至关重要的是,我们推导了一个明确的准则,用特征矩阵的Perron特征值来表达,以确定原子是否在极限中出现最大的适合度,这种现象称为冷凝。我们的研究结果为周期性突变效应在种群达尔文进化中的作用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信