{"title":"A Periodic Kingman Model for the Balance Between Mutation and Selection.","authors":"Camille Coron, Olivier Hénard","doi":"10.1007/s10955-025-03524-8","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a periodic extension of the Kingman model [11] for the balance between selection and mutation in large populations. In its original form, the model describes a population’s fitness distribution by a probability measure on the unit interval evolving through a simple discrete-time dynamical system, in which selection operates via size-biasing, and the mutation distribution remains constant along time. We allow the mutation environment to vary periodically over time and prove the convergence of the fitness distribution along subsequences; crucially, we derive an explicit criterion, phrased in term of the Perron eigenvalue of a characteristic matrix, to determine whether an atom emerges at the largest fitness in the limit, a phenomenon called condensation. Our results provide new insights on the role of periodic mutation effects in population Darwinian evolution.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 10","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03524-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a periodic extension of the Kingman model [11] for the balance between selection and mutation in large populations. In its original form, the model describes a population’s fitness distribution by a probability measure on the unit interval evolving through a simple discrete-time dynamical system, in which selection operates via size-biasing, and the mutation distribution remains constant along time. We allow the mutation environment to vary periodically over time and prove the convergence of the fitness distribution along subsequences; crucially, we derive an explicit criterion, phrased in term of the Perron eigenvalue of a characteristic matrix, to determine whether an atom emerges at the largest fitness in the limit, a phenomenon called condensation. Our results provide new insights on the role of periodic mutation effects in population Darwinian evolution.
期刊介绍:
The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.