{"title":"A comprehensive review on energy storage materials & technologies: applications of nanofabrication techniques for enhanced performance and efficiency","authors":"Asmare Tezera Admase, Ejigayehu Desalegn Asrade, Solomon Workneh Fanta","doi":"10.1007/s40243-025-00329-3","DOIUrl":null,"url":null,"abstract":"<div><p>Energy storage technologies have become increasingly essential in addressing the global transition toward renewable energy systems. The rapid global shift toward renewable energy has made efficient and reliable energy storage technologies (ESTs) essential for addressing the intermittency of solar, wind, and other clean energy sources. Recent research highlights significant advancements in battery chemistries, supercapacitors, hydrogen storage, and thermal energy systems; however, persistent challenges such as high manufacturing costs, limited cycle life, low energy density, and environmental impacts continue to hinder large-scale implementation. Despite the growing number of studies, there is a lack of integrated knowledge that systematically maps recent trends, material innovations, and application specific challenges. This review aims to bridge that gap by comprehensively analyzing advancements in energy storage technologies over the past decade, evaluating key performance indicators such as energy and power density, efficiency, and lifecycle sustainability. By synthesizing findings from peer-reviewed literatures this study identifies critical barriers and emerging strategies such as nanostructured materials, hybrid systems, and circular economy approaches that could redefine future energy storage landscapes. The conclusions underscore the urgent need for interdisciplinary research, material optimization, and cost-effective designs to accelerate the development and deployment of next-generation storage technologies.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 3","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00329-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00329-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Energy storage technologies have become increasingly essential in addressing the global transition toward renewable energy systems. The rapid global shift toward renewable energy has made efficient and reliable energy storage technologies (ESTs) essential for addressing the intermittency of solar, wind, and other clean energy sources. Recent research highlights significant advancements in battery chemistries, supercapacitors, hydrogen storage, and thermal energy systems; however, persistent challenges such as high manufacturing costs, limited cycle life, low energy density, and environmental impacts continue to hinder large-scale implementation. Despite the growing number of studies, there is a lack of integrated knowledge that systematically maps recent trends, material innovations, and application specific challenges. This review aims to bridge that gap by comprehensively analyzing advancements in energy storage technologies over the past decade, evaluating key performance indicators such as energy and power density, efficiency, and lifecycle sustainability. By synthesizing findings from peer-reviewed literatures this study identifies critical barriers and emerging strategies such as nanostructured materials, hybrid systems, and circular economy approaches that could redefine future energy storage landscapes. The conclusions underscore the urgent need for interdisciplinary research, material optimization, and cost-effective designs to accelerate the development and deployment of next-generation storage technologies.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies