{"title":"Stacking Ensemble Algorithm to Predict Re-keying in Group Key Management","authors":"Prity Kumari, Karam Ratan Singh, Ranjan Kumar","doi":"10.1007/s13369-025-09985-z","DOIUrl":null,"url":null,"abstract":"<div><p>Group key management offers a flexible and reliable security mechanism for secure communication in wireless sensor network by assisting with suitable adjustments of the number of keys per node and the number of re-keying messages. In this article, we obtained a datasets using a projective plane after removing a single element. We employ a stacking ensemble algorithm to predict the re-keying value in a projective plane. To improve the performance of the prediction in the stacking model, adaptive boosting and random forest models are chosen as base learners, and for the meta-learner, linear regression is chosen. We observed that the stacking ensemble algorithm demonstrated higher accuracy compared to individual models. The accuracy of the stacking ensemble algorithm is found to be 0.9999, with MAE, MSE, and RMSE values of 0.0026, 0.0000, and 0.0030 respectively.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"50 19","pages":"15809 - 15823"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-025-09985-z","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Group key management offers a flexible and reliable security mechanism for secure communication in wireless sensor network by assisting with suitable adjustments of the number of keys per node and the number of re-keying messages. In this article, we obtained a datasets using a projective plane after removing a single element. We employ a stacking ensemble algorithm to predict the re-keying value in a projective plane. To improve the performance of the prediction in the stacking model, adaptive boosting and random forest models are chosen as base learners, and for the meta-learner, linear regression is chosen. We observed that the stacking ensemble algorithm demonstrated higher accuracy compared to individual models. The accuracy of the stacking ensemble algorithm is found to be 0.9999, with MAE, MSE, and RMSE values of 0.0026, 0.0000, and 0.0030 respectively.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.