The \(A_{\alpha }\)-Spectrum and \(A_{\alpha }\)-Energy of the Dice Lattice

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Xiaxia Zhang, Xiaoling Ma
{"title":"The \\(A_{\\alpha }\\)-Spectrum and \\(A_{\\alpha }\\)-Energy of the Dice Lattice","authors":"Xiaxia Zhang,&nbsp;Xiaoling Ma","doi":"10.1007/s10955-025-03523-9","DOIUrl":null,"url":null,"abstract":"<div><p>The dice lattice is a two-dimensional structure derived from hexagonal and triangular lattices, distinguished by its high degree of symmetry and distinctive physical properties. It holds significant relevance in the fields of mathematics, physics, and materials science, particularly in the investigation of topological phenomena and the dynamic behavior of low-dimensional systems. For a given graph <i>G</i>, let <i>A</i>(<i>G</i>), <i>D</i>(<i>G</i>), and <i>Q</i>(<i>G</i>) represent the adjacency matrix, degree matrix, and signless Laplacian matrix of <i>G</i>, respectively. We define </p><div><div><span>$$\\begin{aligned}A_{\\alpha }(G) = \\alpha D(G) + (1 - \\alpha )A(G), \\text{ for } \\text{ any } \\text{ real } \\text{ value } \\alpha \\in [0, 1].\\end{aligned}$$</span></div></div><p>In this paper, we determine the <span>\\(A_{\\alpha }\\)</span>-spectrum and <span>\\(A_{\\alpha }\\)</span>-energy of the dice lattice under toroidal boundary conditions. Furthermore, we utilize these findings to derive the <i>A</i>-spectrum, <i>Q</i>-spectrum, <i>A</i>-energy, and <i>Q</i>-energy of the dice lattice with the same boundary conditions.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 10","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03523-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The dice lattice is a two-dimensional structure derived from hexagonal and triangular lattices, distinguished by its high degree of symmetry and distinctive physical properties. It holds significant relevance in the fields of mathematics, physics, and materials science, particularly in the investigation of topological phenomena and the dynamic behavior of low-dimensional systems. For a given graph G, let A(G), D(G), and Q(G) represent the adjacency matrix, degree matrix, and signless Laplacian matrix of G, respectively. We define

$$\begin{aligned}A_{\alpha }(G) = \alpha D(G) + (1 - \alpha )A(G), \text{ for } \text{ any } \text{ real } \text{ value } \alpha \in [0, 1].\end{aligned}$$

In this paper, we determine the \(A_{\alpha }\)-spectrum and \(A_{\alpha }\)-energy of the dice lattice under toroidal boundary conditions. Furthermore, we utilize these findings to derive the A-spectrum, Q-spectrum, A-energy, and Q-energy of the dice lattice with the same boundary conditions.

Abstract Image

骰子晶格的\(A_{\alpha }\) -光谱和\(A_{\alpha }\) -能量
骰子晶格是由六边形和三角形晶格衍生而来的二维结构,以其高度对称性和独特的物理性质而著称。它在数学、物理和材料科学领域具有重要的相关性,特别是在拓扑现象和低维系统的动态行为的研究方面。对于给定的图G,设a (G)、D(G)、Q(G)分别表示G的邻接矩阵、度矩阵和无符号拉普拉斯矩阵。我们定义 $$\begin{aligned}A_{\alpha }(G) = \alpha D(G) + (1 - \alpha )A(G), \text{ for } \text{ any } \text{ real } \text{ value } \alpha \in [0, 1].\end{aligned}$$在本文中,我们确定了 \(A_{\alpha }\)-频谱和 \(A_{\alpha }\)-环面边界条件下骰子晶格的能量。进一步,我们利用这些发现推导了具有相同边界条件的骰子晶格的a谱、q谱、a能量和q能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信