{"title":"PHF5, a poly-herbal formulation with antidiabetic potential: in vitro and in silico investigation on HepG2 Cells via PKB/Akt and AMPK pathways","authors":"Simeon Ikechukwu Egba, Gavin Chibundu Ikechukwu, Humphrey Chukwudi Omeoga, Emmanuel Nnaemeka Uhuo, Raymond Chigozie Ibeh, Polycarp Nnacheta Okafor, Patricia Etuna Mbah","doi":"10.1186/s13765-025-01041-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Amidst the rising global prevalence of diabetes, exploring novel anti-diabetic agents remains a crucial endeavor. This study investigated the biochemical mechanism of action of a poly-herbal formulation (PHF5) on HepG2 cell lines as well as molecular interactions between bioactive compounds of PHF5 and PKB/Akt, AMPK. PHF5 was formulated from leaves of <i>Ocimum gratissimum, Vernonia amygdalina, Gongronema latifolium, Gnetum africanum,</i> and <i>Aloe barbadensis</i>.</p><h3>Method</h3><p>The study employed an experimental design encompassing both in vitro and in silico analysis. HepG2 cells were treated with PHF5 in in vitro studies that looked at parameters like cell viability, glucose uptake, and lipid accumulation<i>.</i> Also, glycation and fructosamine formation were studied in bovine serum albumin (BSA) that had been exposed to fructose and PHF5. In silico investigations utilized virtual screening and molecular docking simulations to elucidate the interactions of phytochemicals from PHF5 with key target enzymes involved in glucose metabolism.</p><h3>Results</h3><p>It was found that PHF5 contained key phenolics such as quercetic, rutin etc. through HPLC profiling. In silico modeling demonstrated favorable binding of rutin and quercetin in PHF5 to PKB/Akt and AMPK, key proteins involved in glucose metabolism. The finding here suggests an antidiabetic action of PHF5, which is mediated via activation of the P13K/Akt pathway leading to trafficking of GLUT4 and simulation of insulin secretion. The findings also revealed significant enhancements in cell viability and glucose uptake, coupled with reduced lipid accumulation in HepG2 cells following treatment with PHF5. Additionally, PHF5 demonstrated a mitigating effect on glycation and fructosamine formation.</p><h3>Conclusion</h3><p>This study sheds light on the diverse phytochemical composition of PHF5, highlighting potential interactions with crucial enzymes involved in glucose metabolism. The observed promising outcomes points at the potential of PHF5 as a valuable anti-diabetic agent.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-01041-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-025-01041-6","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Amidst the rising global prevalence of diabetes, exploring novel anti-diabetic agents remains a crucial endeavor. This study investigated the biochemical mechanism of action of a poly-herbal formulation (PHF5) on HepG2 cell lines as well as molecular interactions between bioactive compounds of PHF5 and PKB/Akt, AMPK. PHF5 was formulated from leaves of Ocimum gratissimum, Vernonia amygdalina, Gongronema latifolium, Gnetum africanum, and Aloe barbadensis.
Method
The study employed an experimental design encompassing both in vitro and in silico analysis. HepG2 cells were treated with PHF5 in in vitro studies that looked at parameters like cell viability, glucose uptake, and lipid accumulation. Also, glycation and fructosamine formation were studied in bovine serum albumin (BSA) that had been exposed to fructose and PHF5. In silico investigations utilized virtual screening and molecular docking simulations to elucidate the interactions of phytochemicals from PHF5 with key target enzymes involved in glucose metabolism.
Results
It was found that PHF5 contained key phenolics such as quercetic, rutin etc. through HPLC profiling. In silico modeling demonstrated favorable binding of rutin and quercetin in PHF5 to PKB/Akt and AMPK, key proteins involved in glucose metabolism. The finding here suggests an antidiabetic action of PHF5, which is mediated via activation of the P13K/Akt pathway leading to trafficking of GLUT4 and simulation of insulin secretion. The findings also revealed significant enhancements in cell viability and glucose uptake, coupled with reduced lipid accumulation in HepG2 cells following treatment with PHF5. Additionally, PHF5 demonstrated a mitigating effect on glycation and fructosamine formation.
Conclusion
This study sheds light on the diverse phytochemical composition of PHF5, highlighting potential interactions with crucial enzymes involved in glucose metabolism. The observed promising outcomes points at the potential of PHF5 as a valuable anti-diabetic agent.
期刊介绍:
Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.