{"title":"Coordination-Driven Synthesis of Hierarchical Metal–Organic Network (MON) Particles for Efficient Cu(II) Removal: Structural Design-Characterization and Adsorption Performance","authors":"Feride N. Türk, Hasan Arslanoğlu","doi":"10.1007/s11270-025-08632-5","DOIUrl":null,"url":null,"abstract":"<div><p>Copper (Cu(II)) contamination in aquatic systems is a pressing environmental issue due to its high toxicity, bioaccumulation potential, and adverse effects on ecosystems and human health. Developing adsorbent materials with high capacity, structural stability, and tunable surface chemistry is essential for efficient water purification. In this study, hierarchical metal–organic network (MON) particles were synthesized via a coordination-driven polycondensation of polyphenols and formaldehyde, resulting in robust, fiber-like structures with well-defined micro- (~ 1.6 nm) and mesopores (~ 13.9 nm) and a high surface area of 212.58 m<sup>2</sup>/g. The hierarchical pore architecture enhances mass transfer and adsorption kinetics, enabling a maximum Cu(II) adsorption capacity of 417.21 mg/g at 301.15 K, following the pseudo-second-order kinetic model and Langmuir isotherm. Thermodynamic analysis revealed that adsorption is spontaneous and endothermic, indicating strong chemisorption interactions through oxygen-containing functional groups. These results demonstrate that coordination-driven self-assembly represents an effective strategy for designing high-performance adsorbents with controlled pore structures and superior metal-binding capabilities. Beyond Cu(II) removal, this approach holds significant potential for developing next-generation materials for advanced water treatment, environmental remediation, and sustainable resource recovery.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 14","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-08632-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Copper (Cu(II)) contamination in aquatic systems is a pressing environmental issue due to its high toxicity, bioaccumulation potential, and adverse effects on ecosystems and human health. Developing adsorbent materials with high capacity, structural stability, and tunable surface chemistry is essential for efficient water purification. In this study, hierarchical metal–organic network (MON) particles were synthesized via a coordination-driven polycondensation of polyphenols and formaldehyde, resulting in robust, fiber-like structures with well-defined micro- (~ 1.6 nm) and mesopores (~ 13.9 nm) and a high surface area of 212.58 m2/g. The hierarchical pore architecture enhances mass transfer and adsorption kinetics, enabling a maximum Cu(II) adsorption capacity of 417.21 mg/g at 301.15 K, following the pseudo-second-order kinetic model and Langmuir isotherm. Thermodynamic analysis revealed that adsorption is spontaneous and endothermic, indicating strong chemisorption interactions through oxygen-containing functional groups. These results demonstrate that coordination-driven self-assembly represents an effective strategy for designing high-performance adsorbents with controlled pore structures and superior metal-binding capabilities. Beyond Cu(II) removal, this approach holds significant potential for developing next-generation materials for advanced water treatment, environmental remediation, and sustainable resource recovery.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.