Uniaxial tensile strain modulation of the photoinduced ultrafast charge transfer dynamics in the MoS2/WS2 heterostructure

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Huadong Zeng, Xinlu Cheng
{"title":"Uniaxial tensile strain modulation of the photoinduced ultrafast charge transfer dynamics in the MoS2/WS2 heterostructure","authors":"Huadong Zeng,&nbsp;Xinlu Cheng","doi":"10.1140/epjb/s10051-025-01056-4","DOIUrl":null,"url":null,"abstract":"<div><p>Strain engineering has been reported as an effective strategy for controlling the electronic properties and modulating the charge transfer dynamics in two-dimensional (2D) semiconducting materials. Herein, by performing the time-dependent ab initio nonadiabatic molecular dynamics simulation, we deeply investigated the uniaxial tensile strain-modulated photoinduced ultrafast charge transfer dynamics of MoS<sub>2</sub>/WS<sub>2</sub> heterostructure. Our calculations demonstrate that the uniaxial tensile strain along the armchair/zigzag direction can significantly modulate the ultrafast electron transfer dynamics in the MoS<sub>2</sub>/WS<sub>2</sub> heterostructure, but has little effect on the hole transfer dynamics. Most importantly, the photoexcited electron transfer process of the system under 4% zigzag direction tensile strain is completely suppressed, and the photoexcited hole transfer pathway is turned into MoS<sub>2</sub>@Γ → WS<sub>2</sub>@Γ. It is further revealed that the time scale of ultrafast electron transfer of MoS<sub>2</sub>/WS<sub>2</sub> heterostructure subjected to 2% zigzag direction tensile strain is about 1.7 ps with the transfer pathway of WS<sub>2</sub>@K → MoS<sub>2</sub>@K, and the time scale of ultrafast hole transfer is 32 fs. Overall, these findings strongly support that the tunability of photoinduced ultrafast charge transfer dynamics by strain engineering implies potential applications in the flexible electronics and optoelectronics based on 2D materials.</p><h3>Graphic abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 9","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-01056-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Strain engineering has been reported as an effective strategy for controlling the electronic properties and modulating the charge transfer dynamics in two-dimensional (2D) semiconducting materials. Herein, by performing the time-dependent ab initio nonadiabatic molecular dynamics simulation, we deeply investigated the uniaxial tensile strain-modulated photoinduced ultrafast charge transfer dynamics of MoS2/WS2 heterostructure. Our calculations demonstrate that the uniaxial tensile strain along the armchair/zigzag direction can significantly modulate the ultrafast electron transfer dynamics in the MoS2/WS2 heterostructure, but has little effect on the hole transfer dynamics. Most importantly, the photoexcited electron transfer process of the system under 4% zigzag direction tensile strain is completely suppressed, and the photoexcited hole transfer pathway is turned into MoS2@Γ → WS2@Γ. It is further revealed that the time scale of ultrafast electron transfer of MoS2/WS2 heterostructure subjected to 2% zigzag direction tensile strain is about 1.7 ps with the transfer pathway of WS2@K → MoS2@K, and the time scale of ultrafast hole transfer is 32 fs. Overall, these findings strongly support that the tunability of photoinduced ultrafast charge transfer dynamics by strain engineering implies potential applications in the flexible electronics and optoelectronics based on 2D materials.

Graphic abstract

MoS2/WS2异质结构中光致超快电荷转移动力学的单轴拉伸应变调制
应变工程被认为是控制二维半导体材料的电子特性和调制电荷转移动力学的有效策略。本文通过时间相关的从头算非绝热分子动力学模拟,深入研究了MoS2/WS2异质结构单轴拉伸应变调制光致超快电荷转移动力学。计算结果表明,单轴拉伸应变可以显著调节MoS2/WS2异质结构中的超快电子转移动力学,但对空穴转移动力学影响不大。最重要的是,该体系在4%之字形方向拉伸应变下的光激发电子转移过程被完全抑制,光激发空穴转移途径变为MoS2@Γ→WS2@Γ。进一步发现,在2%之向拉伸应变作用下,MoS2/WS2异质结构的超快电子转移时间尺度约为1.7 ps,转移路径为WS2@K→MoS2@K,超快空穴转移时间尺度为32 fs。总的来说,这些发现有力地支持了通过应变工程实现光致超快电荷转移动力学的可调性,这意味着在基于二维材料的柔性电子和光电子领域具有潜在的应用前景。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信