Shu-Xu Yi, Wen Zhao, Ren-Xin Xu, Xue-Feng Wu, Giulia Stratta, Simone Dall’Osso, Yan-Jun Xu, Andrea Santangelo, Silvia Zane, Shuang-Nan Zhang, Hua Feng, Huan Yang, Junjie Mao, Junqiang Ge, Lijing Shao, Mi-Xiang Lan, He Gao, Lin Lin, Ning Jiang, Qingwen Wu, Tong Liu, Yun-Wei Yu, Xiang-Yu Wang, Jin Zhang, Dafne Guetta, Jin-Jun Geng, Di Xiao, Yong-Feng Huang, Yacheng Kang, Tian-Yong Cao, Zhen Zhang, Zhenwei Lyu, Zhen Pan, Yunfeng Chen, Yong Gao, Ang Li, Yu-Cong Fu, Shuo Xiao, Wei-Yang Wang, Fayin Wang, Zhenyin Zhao, Weihua Lei, Rong-Feng Shen, Lixin Dai, Guang-Lei Wu, Liang-Duan Liu, Bing Li, Xilong Fan, Xing-Jiang Zhu, Youjun Lu, Fan Xu, Kangfa Cheng, Da-Bin Lin, Xiao-Hong Zhao, Jun-Jie Wei, Bin-Bin Zhang, Ji-Rong Mao, Yongquan Xue, Xinwen Shu, Wenjie Zhang, Wei-Li Lin, Achille Fiore, Zhuo Li, Antonio Martin-Carrillo, Joseph Fisher, Fei Xie, Ye Li, Sandro Mereghetti, Shao-Lin Xiong, Yu-Han Yang, Eleonora Troja, Zi-Gao Dai, Da-Ming Wei, En-Wei Liang, J. E. Horvath, G. R. Cunha Sampaio, L. G. Barão, L. M. de Sá
{"title":"Prospects for time-domain and multi-messenger science with eXTP","authors":"Shu-Xu Yi, Wen Zhao, Ren-Xin Xu, Xue-Feng Wu, Giulia Stratta, Simone Dall’Osso, Yan-Jun Xu, Andrea Santangelo, Silvia Zane, Shuang-Nan Zhang, Hua Feng, Huan Yang, Junjie Mao, Junqiang Ge, Lijing Shao, Mi-Xiang Lan, He Gao, Lin Lin, Ning Jiang, Qingwen Wu, Tong Liu, Yun-Wei Yu, Xiang-Yu Wang, Jin Zhang, Dafne Guetta, Jin-Jun Geng, Di Xiao, Yong-Feng Huang, Yacheng Kang, Tian-Yong Cao, Zhen Zhang, Zhenwei Lyu, Zhen Pan, Yunfeng Chen, Yong Gao, Ang Li, Yu-Cong Fu, Shuo Xiao, Wei-Yang Wang, Fayin Wang, Zhenyin Zhao, Weihua Lei, Rong-Feng Shen, Lixin Dai, Guang-Lei Wu, Liang-Duan Liu, Bing Li, Xilong Fan, Xing-Jiang Zhu, Youjun Lu, Fan Xu, Kangfa Cheng, Da-Bin Lin, Xiao-Hong Zhao, Jun-Jie Wei, Bin-Bin Zhang, Ji-Rong Mao, Yongquan Xue, Xinwen Shu, Wenjie Zhang, Wei-Li Lin, Achille Fiore, Zhuo Li, Antonio Martin-Carrillo, Joseph Fisher, Fei Xie, Ye Li, Sandro Mereghetti, Shao-Lin Xiong, Yu-Han Yang, Eleonora Troja, Zi-Gao Dai, Da-Ming Wei, En-Wei Liang, J. E. Horvath, G. R. Cunha Sampaio, L. G. Barão, L. M. de Sá","doi":"10.1007/s11433-025-2782-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this new era of time-domain and multi-messenger astronomy, various new transients and new phenomena are constantly being discovered thanks to the rapid advances in observations, which provide the excellent opportunity to study the physics in the extreme environments. The enhanced X-ray Timing and Polarimetry mission (eXTP), planned to be launched in 2030, has several key advantages, including advanced polarimetry, high sensitivity & large effective area, and wide energy range coverage, which make it a groundbreaking project in high-energy astrophysics. In this article, we briefly introduce the potential time-domain and multi-messenger targets for eXTP, including gravitational-wave (GW) counterparts, gamma-ray bursts (GRBs), magnetars and fast radio bursts (FRBs), tidal disruption events (TDEs), supernovae, high energy neutrinos and TeV active galactic nucleus (AGNs), and so on. We discuss the advantages of future eXTP observations for detecting these sources, their detection capabilities, the abilities to distinguish theoretical models, and their applications in gravity and cosmology.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 11","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-025-2782-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this new era of time-domain and multi-messenger astronomy, various new transients and new phenomena are constantly being discovered thanks to the rapid advances in observations, which provide the excellent opportunity to study the physics in the extreme environments. The enhanced X-ray Timing and Polarimetry mission (eXTP), planned to be launched in 2030, has several key advantages, including advanced polarimetry, high sensitivity & large effective area, and wide energy range coverage, which make it a groundbreaking project in high-energy astrophysics. In this article, we briefly introduce the potential time-domain and multi-messenger targets for eXTP, including gravitational-wave (GW) counterparts, gamma-ray bursts (GRBs), magnetars and fast radio bursts (FRBs), tidal disruption events (TDEs), supernovae, high energy neutrinos and TeV active galactic nucleus (AGNs), and so on. We discuss the advantages of future eXTP observations for detecting these sources, their detection capabilities, the abilities to distinguish theoretical models, and their applications in gravity and cosmology.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.