{"title":"Joint Mobility-Driven Adaptive Power Control and Priority-Aware Bandwidth Allocation for AoI and Energy Optimization in WBANs","authors":"Muhammad Morshed Alam;Muhammad Yeasir Arafat;Tamim Hossain;Md. Labibul Haque Labib;Md. Shafkat Kamal;Md. Rakibur Rahman Nayem;Md. Ratul Islam;Md. Noor-A-Rahim;Dirk Pesch","doi":"10.1109/OJCOMS.2025.3612475","DOIUrl":null,"url":null,"abstract":"Wireless Body Area Networks (WBANs) are recognized as innovative technology for personal health monitoring. In WBANs, physiological sensor data must be transmitted to the local processing unit (LPU) with minimal age of information (AoI) based on sensor data priority. However, the limited resources of sensors, such as energy, computational capacity, caching and bandwidth, make AoI minimization challenging. Additionally, dynamic radio links caused by body movement and interference further complicate the task. This study aims to minimize the weighted cost of time average AoI and energy consumption by adaptively controlling the transmit power based on real-time distance variations between the sensor and LPU, while allocating priority-aware bandwidth under quality of service and resource constraints in continuous decision space. To solve the non-linear problem, a particle filter-assisted Lagrange relaxation with Karush–Kuhn–Tucker conditions (PF-LKKT) framework is proposed. A recursive particle filter based on received signal strength and motion-sensor data is employed for accurate distance estimation. Then, according to the distance variation adaptively transmit power and data priority-aware bandwidth is jointly allocated. Simulation results demonstrate the superiority of the proposed framework over existing techniques.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"8095-8110"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11177546","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11177546/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless Body Area Networks (WBANs) are recognized as innovative technology for personal health monitoring. In WBANs, physiological sensor data must be transmitted to the local processing unit (LPU) with minimal age of information (AoI) based on sensor data priority. However, the limited resources of sensors, such as energy, computational capacity, caching and bandwidth, make AoI minimization challenging. Additionally, dynamic radio links caused by body movement and interference further complicate the task. This study aims to minimize the weighted cost of time average AoI and energy consumption by adaptively controlling the transmit power based on real-time distance variations between the sensor and LPU, while allocating priority-aware bandwidth under quality of service and resource constraints in continuous decision space. To solve the non-linear problem, a particle filter-assisted Lagrange relaxation with Karush–Kuhn–Tucker conditions (PF-LKKT) framework is proposed. A recursive particle filter based on received signal strength and motion-sensor data is employed for accurate distance estimation. Then, according to the distance variation adaptively transmit power and data priority-aware bandwidth is jointly allocated. Simulation results demonstrate the superiority of the proposed framework over existing techniques.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.