Silicon Photonic Waveguide Polarizers Integrated With 2D MoS2 Films

IF 5.1 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Junkai Hu;Jiayang Wu;Irfan H. Abidi;Di Jin;Yuning Zhang;Jianfeng Mao;Anchal Pandey;Yijun Wang;Sumeet Walia;David J. Moss
{"title":"Silicon Photonic Waveguide Polarizers Integrated With 2D MoS2 Films","authors":"Junkai Hu;Jiayang Wu;Irfan H. Abidi;Di Jin;Yuning Zhang;Jianfeng Mao;Anchal Pandey;Yijun Wang;Sumeet Walia;David J. Moss","doi":"10.1109/JSTQE.2025.3610438","DOIUrl":null,"url":null,"abstract":"Polarization control is of fundamental importance for modern optical systems, and optical polarizers serve as critical components for enabling this functionality. Here, we experimentally demonstrate optical polarizers by integrating 2D molybdenum disulfide (MoS<sub>2</sub>) films onto silicon photonic waveguides. High-quality monolayer MoS<sub>2</sub> films with highly anisotropic light absorption are synthesized via a low-pressure chemical vapor deposition (LPCVD) method and subsequently transferred onto silicon-on-insulator (SOI) nanowire waveguides to fabricate integrated optical polarizers. Detailed measurements are carried out for the fabricated devices with various MoS<sub>2</sub> film coating lengths and silicon waveguide geometry. The results show that a maximum polarization-dependent loss of ∼21 dB is achieved, together with a high figure of merit of ∼4.2. In addition, the hybrid waveguide polarizers exhibit broad operation bandwidth exceeding ∼100 nm and excellent power durability. These results highlight the strong potential for on-chip integration of 2D MoS<sub>2</sub> films to implement high-performance polarization selective devices.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"32 2: 3-D Horizons in Photonics: Integrated Circuits","pages":"1-11"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11165369/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Polarization control is of fundamental importance for modern optical systems, and optical polarizers serve as critical components for enabling this functionality. Here, we experimentally demonstrate optical polarizers by integrating 2D molybdenum disulfide (MoS2) films onto silicon photonic waveguides. High-quality monolayer MoS2 films with highly anisotropic light absorption are synthesized via a low-pressure chemical vapor deposition (LPCVD) method and subsequently transferred onto silicon-on-insulator (SOI) nanowire waveguides to fabricate integrated optical polarizers. Detailed measurements are carried out for the fabricated devices with various MoS2 film coating lengths and silicon waveguide geometry. The results show that a maximum polarization-dependent loss of ∼21 dB is achieved, together with a high figure of merit of ∼4.2. In addition, the hybrid waveguide polarizers exhibit broad operation bandwidth exceeding ∼100 nm and excellent power durability. These results highlight the strong potential for on-chip integration of 2D MoS2 films to implement high-performance polarization selective devices.
集成二维MoS2薄膜的硅光子波导偏振器
偏振控制对现代光学系统至关重要,而光学偏振器是实现这一功能的关键部件。在这里,我们通过将二维二硫化钼(MoS2)薄膜集成到硅光子波导上,实验证明了光学偏振器。采用低压化学气相沉积(LPCVD)方法合成了具有高各向异性光吸收的高质量MoS2单层薄膜,并将其转移到绝缘体上硅(SOI)纳米线波导上以制造集成光学偏振器。对不同MoS2薄膜涂层长度和硅波导几何形状的器件进行了详细的测量。结果表明,极化相关的最大损耗达到了~ 21 dB,同时具有~ 4.2的高品质值。此外,混合波导偏振器具有超过~ 100 nm的宽工作带宽和优异的功率耐久性。这些结果突出了2D MoS2薄膜片上集成实现高性能极化选择器件的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Selected Topics in Quantum Electronics
IEEE Journal of Selected Topics in Quantum Electronics 工程技术-工程:电子与电气
CiteScore
10.60
自引率
2.00%
发文量
212
审稿时长
3 months
期刊介绍: Papers published in the IEEE Journal of Selected Topics in Quantum Electronics fall within the broad field of science and technology of quantum electronics of a device, subsystem, or system-oriented nature. Each issue is devoted to a specific topic within this broad spectrum. Announcements of the topical areas planned for future issues, along with deadlines for receipt of manuscripts, are published in this Journal and in the IEEE Journal of Quantum Electronics. Generally, the scope of manuscripts appropriate to this Journal is the same as that for the IEEE Journal of Quantum Electronics. Manuscripts are published that report original theoretical and/or experimental research results that advance the scientific and technological base of quantum electronics devices, systems, or applications. The Journal is dedicated toward publishing research results that advance the state of the art or add to the understanding of the generation, amplification, modulation, detection, waveguiding, or propagation characteristics of coherent electromagnetic radiation having sub-millimeter and shorter wavelengths. In order to be suitable for publication in this Journal, the content of manuscripts concerned with subject-related research must have a potential impact on advancing the technological base of quantum electronic devices, systems, and/or applications. Potential authors of subject-related research have the responsibility of pointing out this potential impact. System-oriented manuscripts must be concerned with systems that perform a function previously unavailable or that outperform previously established systems that did not use quantum electronic components or concepts. Tutorial and review papers are by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信