Radiation Hardness on Dielectric/Ferroelectric Stacked Negative Capacitance Multigate Metal–Oxide–Semiconductor FETs at Sub-3-nm Technology Node: Device to CMOS Inverter Layout

IF 3.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Sresta Valasa;Venkata Ramakrishna Kotha;Narendar Vadthiya
{"title":"Radiation Hardness on Dielectric/Ferroelectric Stacked Negative Capacitance Multigate Metal–Oxide–Semiconductor FETs at Sub-3-nm Technology Node: Device to CMOS Inverter Layout","authors":"Sresta Valasa;Venkata Ramakrishna Kotha;Narendar Vadthiya","doi":"10.1109/TDEI.2025.3582236","DOIUrl":null,"url":null,"abstract":"In this work, for the first time, we present a proper comparison of radiation effects on the dielectric/ferroelectric (FE) stacked negative capacitance (NC) FinFETs and nanosheet (NS) FETs at the sub-3-nm technology node, providing a performance benchmark in device and CMOS inverter cell. The impact of heavy ion particle strikes is analyzed for various directions (top, channel, and lateral strikes), 30 locations, and 5 inclined angles to identify the most critical strike scenarios causing performance degradation. The NC-NSFET demonstrates superior radiation resilience across all strike conditions compared to the NC-FinFET. A detailed circuit-level evaluation of a CMOS inverter layout shows that NC-NSFETs can tolerate total ionizing dosages (TID) up to <inline-formula> <tex-math>$25~\\text {MeV}\\cdot \\text {cm}^{{2}}$ </tex-math></inline-formula>/mg, whereas NC-FinFETs fail at <inline-formula> <tex-math>$20~\\text {MeV}\\cdot \\text {cm}^{{2}}$ </tex-math></inline-formula>/mg indicating that the NC-NSFETs sustain nearly double the dosage compared to NC-FinFETs. These findings highlight the robustness of NC-NSFETs, making them a preferred choice for applications in radiation-rich environments such as spacecraft electronics, high-altitude avionics, nuclear reactors, and medical devices.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 5","pages":"3089-3096"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11045914/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, for the first time, we present a proper comparison of radiation effects on the dielectric/ferroelectric (FE) stacked negative capacitance (NC) FinFETs and nanosheet (NS) FETs at the sub-3-nm technology node, providing a performance benchmark in device and CMOS inverter cell. The impact of heavy ion particle strikes is analyzed for various directions (top, channel, and lateral strikes), 30 locations, and 5 inclined angles to identify the most critical strike scenarios causing performance degradation. The NC-NSFET demonstrates superior radiation resilience across all strike conditions compared to the NC-FinFET. A detailed circuit-level evaluation of a CMOS inverter layout shows that NC-NSFETs can tolerate total ionizing dosages (TID) up to $25~\text {MeV}\cdot \text {cm}^{{2}}$ /mg, whereas NC-FinFETs fail at $20~\text {MeV}\cdot \text {cm}^{{2}}$ /mg indicating that the NC-NSFETs sustain nearly double the dosage compared to NC-FinFETs. These findings highlight the robustness of NC-NSFETs, making them a preferred choice for applications in radiation-rich environments such as spacecraft electronics, high-altitude avionics, nuclear reactors, and medical devices.
介电/铁电堆叠负电容多栅金属氧化物半导体场效应管在亚3nm技术节点上的辐射硬度:器件到CMOS逆变器布局
在这项工作中,我们首次在亚3纳米技术节点上对介电/铁电(FE)堆叠负电容(NC) finfet和纳米片(NS) fet的辐射效应进行了适当的比较,为器件和CMOS逆变器电池提供了性能基准。分析了重离子颗粒在不同方向(顶部、通道和横向)、30个位置和5个倾斜角度下的冲击影响,以确定导致性能下降的最关键冲击情况。与NC-FinFET相比,NC-NSFET在所有打击条件下都表现出优越的辐射弹性。对CMOS逆变器布局的详细电路级评估表明,nc - nsfet可以耐受高达$25~\text {MeV}\cdot \text {cm}^{{2}}$ /mg的总电离剂量(TID),而nc - finfet在$20~\text {MeV}\cdot \text {cm}^{{2}}$ /mg时失效,表明nc - nsfet承受的剂量几乎是nc - finfet的两倍。这些发现突出了nc - nsfet的稳健性,使其成为航天器电子、高空航空电子、核反应堆和医疗设备等辐射丰富环境应用的首选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Dielectrics and Electrical Insulation
IEEE Transactions on Dielectrics and Electrical Insulation 工程技术-工程:电子与电气
CiteScore
6.00
自引率
22.60%
发文量
309
审稿时长
5.2 months
期刊介绍: Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信