Applying Machine Learning to a 1-D CMOS-MEMS Anemometer for Angle Detection and Range Extension

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Lars Holm;Thomas L. Hackett;Jurriaan Schmitz;Remco J. Wiegerink;Joost C. Lötters;Dennis Alveringh
{"title":"Applying Machine Learning to a 1-D CMOS-MEMS Anemometer for Angle Detection and Range Extension","authors":"Lars Holm;Thomas L. Hackett;Jurriaan Schmitz;Remco J. Wiegerink;Joost C. Lötters;Dennis Alveringh","doi":"10.1109/LSENS.2025.3605012","DOIUrl":null,"url":null,"abstract":"Through machine learning (ML), the measurement range of a 1-D CMOS-MEMS anemometer has been extended by a factor of 8.3, while enabling 360<inline-formula><tex-math>$^{\\circ }$</tex-math></inline-formula> directional measurement. Without the use of ML, the angle of attack of the flow was inseparable from the wind speed using the sensor output due to its dependence on both parameters simultaneously. Random forest and gradient boosting ML algorithms have been evaluated for their performance. The random forest regression performed best in all tests, extending the sensor's measurement range from <bold>1.2</b> to <inline-formula><tex-math>${\\mathbf{10}}$</tex-math></inline-formula> m/s for all directions, with a <inline-formula><tex-math>${\\mathbf{3.9}}$</tex-math></inline-formula>% full-scale error for speed and <inline-formula><tex-math>${\\mathbf{5}}$</tex-math></inline-formula>% for direction. Gradient boosting performed slightly worse (<inline-formula><tex-math>${\\mathbf{4.3}}$</tex-math></inline-formula>% and <inline-formula><tex-math>${\\mathbf{6.6}}$</tex-math></inline-formula>%) but did have much smaller model sizes (<<inline-formula><tex-math>${\\mathbf{1}}$</tex-math></inline-formula>%). A Shapley additive explanation analysis was performed to determine the impact of different sensor outputs on the ML prediction, giving key insights into ways to improve sensor designs. Despite the implicit symmetry of a 1-D sensor's output for positive and negative wind angles, the ML models can extract small (hidden) features from the data, which contain information on the direction. The 1-D configuration in combination with ML allows for a state-of-the-art accuracy in both speed and direction, with a significantly smaller sensor footprint (0.245 mm<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>).","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11146510","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11146510/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Through machine learning (ML), the measurement range of a 1-D CMOS-MEMS anemometer has been extended by a factor of 8.3, while enabling 360$^{\circ }$ directional measurement. Without the use of ML, the angle of attack of the flow was inseparable from the wind speed using the sensor output due to its dependence on both parameters simultaneously. Random forest and gradient boosting ML algorithms have been evaluated for their performance. The random forest regression performed best in all tests, extending the sensor's measurement range from 1.2 to ${\mathbf{10}}$ m/s for all directions, with a ${\mathbf{3.9}}$% full-scale error for speed and ${\mathbf{5}}$% for direction. Gradient boosting performed slightly worse (${\mathbf{4.3}}$% and ${\mathbf{6.6}}$%) but did have much smaller model sizes (<${\mathbf{1}}$%). A Shapley additive explanation analysis was performed to determine the impact of different sensor outputs on the ML prediction, giving key insights into ways to improve sensor designs. Despite the implicit symmetry of a 1-D sensor's output for positive and negative wind angles, the ML models can extract small (hidden) features from the data, which contain information on the direction. The 1-D configuration in combination with ML allows for a state-of-the-art accuracy in both speed and direction, with a significantly smaller sensor footprint (0.245 mm$^{2}$).
将机器学习应用于1维CMOS-MEMS风速计的角度检测和范围扩展
通过机器学习(ML), 1维CMOS-MEMS风速仪的测量范围扩展了8.3倍,同时实现360$^{\circ}$方向测量。在不使用ML的情况下,由于气流的迎角同时依赖于两个参数,因此使用传感器输出的气流的迎角与风速是不可分割的。随机森林和梯度增强ML算法的性能得到了评价。随机森林回归在所有测试中表现最好,将传感器的测量范围从1.2扩展到所有方向的${\mathbf{10}}$ m/s,速度的全尺寸误差为${\mathbf{3.9}}$%,方向的全尺寸误差为${\mathbf{5}}$%。梯度增强的性能略差(${\mathbf{4.3}}$%和${\mathbf{6.6}}$%),但模型大小确实小得多(${\mathbf{1}}$%)。进行Shapley加性解释分析以确定不同传感器输出对ML预测的影响,从而为改进传感器设计的方法提供关键见解。尽管一维传感器的正风向和负风向输出具有隐式对称性,但ML模型可以从数据中提取包含方向信息的小(隐藏)特征。1-D配置与ML相结合,可以在速度和方向上实现最先进的精度,并且传感器占地面积显着减小(0.245 mm$^{2}$)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信