A Sufficient Condition of Non-Convex ${\ell }_{p} -\beta {\ell }_{q}$ Minimization for Sparse Recovery

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Tao Pang;Geng-Hua Li
{"title":"A Sufficient Condition of Non-Convex ${\\ell }_{p} -\\beta {\\ell }_{q}$ Minimization for Sparse Recovery","authors":"Tao Pang;Geng-Hua Li","doi":"10.1109/LSP.2025.3611325","DOIUrl":null,"url":null,"abstract":"To recover sparse signals via <inline-formula><tex-math>${\\ell }_{p}-\\beta {\\ell }_{q}$</tex-math></inline-formula> minimization with parameters <inline-formula><tex-math>$0 &lt; p \\leq 1$</tex-math></inline-formula>, <inline-formula><tex-math>$1 \\leq q \\leq 2$</tex-math></inline-formula> (<inline-formula><tex-math>$p\\ne q$</tex-math></inline-formula>) and <inline-formula><tex-math>$0 \\leq \\beta \\leq 1$</tex-math></inline-formula>, this letter employs the Restricted Isometry Property (RIP) and Restricted Orthogonality Property (ROP) to investigate sparse signal recovery in the noise setting. Based on these analyses, a sufficient condition is proposed, which generalizes and improves state-of-the-art results. In Section <xref>III</xref>, several key remarks are presented. Our results also demonstrate that the derived condition outperforms the existing ones.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3690-3694"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11168258/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To recover sparse signals via ${\ell }_{p}-\beta {\ell }_{q}$ minimization with parameters $0 < p \leq 1$, $1 \leq q \leq 2$ ($p\ne q$) and $0 \leq \beta \leq 1$, this letter employs the Restricted Isometry Property (RIP) and Restricted Orthogonality Property (ROP) to investigate sparse signal recovery in the noise setting. Based on these analyses, a sufficient condition is proposed, which generalizes and improves state-of-the-art results. In Section III, several key remarks are presented. Our results also demonstrate that the derived condition outperforms the existing ones.
稀疏恢复非凸${\ well}_{p} -\beta {\ well}_{q}$最小化的充分条件
为了通过参数$0 < p \leq 1$、$1 \leq q \leq 2$ ($p\ne q$)和$0 \leq \beta \leq 1$的${\ell }_{p}-\beta {\ell }_{q}$最小化来恢复稀疏信号,本文采用了受限等距特性(RIP)和受限正交特性(ROP)来研究噪声环境下的稀疏信号恢复。在此基础上,提出了一个充分条件,对现有的研究结果进行了推广和改进。在第三节中,提出了几项关键意见。我们的结果还表明,所推导的条件优于现有的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信