Learning Human-Object Interactions in Videos by State Space Models

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Qiyue Li;Xuyang Li;Yuanqing Li;Jiapeng Yan
{"title":"Learning Human-Object Interactions in Videos by State Space Models","authors":"Qiyue Li;Xuyang Li;Yuanqing Li;Jiapeng Yan","doi":"10.1109/LSP.2025.3606840","DOIUrl":null,"url":null,"abstract":"Video-based human-object interaction (HOI) recognition aims at labeling human and object sequences with multiple human-object interaction classes. The efficiency of existing methods still requires improvement in terms of parameter and computational complexity, which restricts the application of video-based human-object interaction recognition. In this letter, we present HOI-Mamba, a novel approach for efficient video-based human-object interaction recognition with the state space model. HOI-Mamba transforms the spatial-temporal graph to the sequence and captures the human-object interaction features with bidirectional Mamba, which leads to superior performance with higher efficiency. Experimental results on two public human-object interaction video benchmarks demonstrate that HOI-Mamba achieves significant improvements over existing methods, e.g., achieving higher F1 Score for sub-activity recognition with fewer parameters and FLOPs than existing methods both on the CAD-120 dataset and the Something-Else dataset.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3670-3674"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11152579/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Video-based human-object interaction (HOI) recognition aims at labeling human and object sequences with multiple human-object interaction classes. The efficiency of existing methods still requires improvement in terms of parameter and computational complexity, which restricts the application of video-based human-object interaction recognition. In this letter, we present HOI-Mamba, a novel approach for efficient video-based human-object interaction recognition with the state space model. HOI-Mamba transforms the spatial-temporal graph to the sequence and captures the human-object interaction features with bidirectional Mamba, which leads to superior performance with higher efficiency. Experimental results on two public human-object interaction video benchmarks demonstrate that HOI-Mamba achieves significant improvements over existing methods, e.g., achieving higher F1 Score for sub-activity recognition with fewer parameters and FLOPs than existing methods both on the CAD-120 dataset and the Something-Else dataset.
通过状态空间模型学习视频中的人-物交互
基于视频的人-物交互(HOI)识别旨在通过多个人-物交互类标记人-物序列。现有方法的效率在参数和计算复杂度方面还有待提高,制约了基于视频的人-物交互识别的应用。在这封信中,我们提出了HOI-Mamba,一种基于状态空间模型的高效视频人机交互识别的新方法。HOI-Mamba将时空图转换为序列,并利用双向Mamba捕捉人-物交互特征,从而以更高的效率实现卓越的性能。在两个公开的人-物交互视频基准测试上的实验结果表明,与现有方法相比,HOI-Mamba取得了显著的改进,例如,在CAD-120数据集和Something-Else数据集上,HOI-Mamba以更少的参数和FLOPs获得了更高的F1分数,用于子活动识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信