Revealing atomic-scale switching pathways in van der Waals ferroelectrics

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xinyan Li, Kenna Ashen, Chuqiao Shi, Nannan Mao, Saagar Kolachina, Kaiwen Yang, Tianyi Zhang, Sajid Husain, Ramamoorthy Ramesh, Jing Kong, Xiaofeng Qian, Yimo Han
{"title":"Revealing atomic-scale switching pathways in van der Waals ferroelectrics","authors":"Xinyan Li,&nbsp;Kenna Ashen,&nbsp;Chuqiao Shi,&nbsp;Nannan Mao,&nbsp;Saagar Kolachina,&nbsp;Kaiwen Yang,&nbsp;Tianyi Zhang,&nbsp;Sajid Husain,&nbsp;Ramamoorthy Ramesh,&nbsp;Jing Kong,&nbsp;Xiaofeng Qian,&nbsp;Yimo Han","doi":"10.1126/sciadv.adw3295","DOIUrl":null,"url":null,"abstract":"<div >Two-dimensional (2D) van der Waals (vdW) materials hold the potential for ultrascaled ferroelectric (FE) devices due to their silicon compatibility and robust polarization down to atomic scale. However, the inherently weak vdW interactions enable facile sliding between layers, introducing complexities beyond those encountered in conventional ferroelectric materials and presenting substantial challenges in uncovering intricate switching pathways. Here, we combine atomic-resolution imaging under in situ electrical biasing conditions with first-principles calculations to unravel the atomic-scale switching mechanisms in SnSe, a vdW group IV monochalcogenide. Our results uncover the coexistence of a consecutive 90° switching pathway and a direct 180° switching pathway from antiferroelectric (AFE) to FE order in this vdW system. Atomic-scale investigations and strain analysis reveal that the switching processes simultaneously induce interlayer sliding and compressive strain, while the lattice remains coherent despite the presence of multidomain structures. These findings elucidate vdW ferroelectric switching dynamics at atomic scale and lay the foundation for the rational design of 2D ferroelectric nanodevices.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 40","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw3295","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw3295","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) van der Waals (vdW) materials hold the potential for ultrascaled ferroelectric (FE) devices due to their silicon compatibility and robust polarization down to atomic scale. However, the inherently weak vdW interactions enable facile sliding between layers, introducing complexities beyond those encountered in conventional ferroelectric materials and presenting substantial challenges in uncovering intricate switching pathways. Here, we combine atomic-resolution imaging under in situ electrical biasing conditions with first-principles calculations to unravel the atomic-scale switching mechanisms in SnSe, a vdW group IV monochalcogenide. Our results uncover the coexistence of a consecutive 90° switching pathway and a direct 180° switching pathway from antiferroelectric (AFE) to FE order in this vdW system. Atomic-scale investigations and strain analysis reveal that the switching processes simultaneously induce interlayer sliding and compressive strain, while the lattice remains coherent despite the presence of multidomain structures. These findings elucidate vdW ferroelectric switching dynamics at atomic scale and lay the foundation for the rational design of 2D ferroelectric nanodevices.

Abstract Image

揭示范德华铁电体的原子尺度开关通路
二维(2D)范德华(vdW)材料由于其硅兼容性和强大的极化到原子尺度而具有超尺度铁电(FE)器件的潜力。然而,固有的弱vdW相互作用使得层之间容易滑动,引入了传统铁电材料所遇到的复杂性,并在揭示复杂的开关路径方面提出了重大挑战。在这里,我们将原位电偏置条件下的原子分辨率成像与第一性原理计算相结合,揭示了SnSe (vdW IV族单硫系化合物)的原子尺度开关机制。我们的研究结果揭示了在该vdW系统中从反铁电(AFE)到FE阶的连续90°切换路径和直接180°切换路径的共存。原子尺度的研究和应变分析表明,切换过程同时引起层间滑动和压缩应变,而尽管存在多畴结构,晶格仍然保持相干。这些发现阐明了原子尺度下的vdW铁电开关动力学,为二维铁电纳米器件的合理设计奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信