Bin Zhang , Carl F.O. Dahlberg , Tim Fischer , J.W. Hutchinson , W.J. Meng
{"title":"Non-proportional plastic deformation at the micron scale: Single crystal Cu cantilever beams subjected to orthogonal bending","authors":"Bin Zhang , Carl F.O. Dahlberg , Tim Fischer , J.W. Hutchinson , W.J. Meng","doi":"10.1016/j.jmps.2025.106375","DOIUrl":null,"url":null,"abstract":"<div><div>Experiments involving abrupt non-collinear changes in the direction of loading in the plastic range have been performed on micron-scale, single crystal Cu cantilever beams to provide the first data of its kind on non-proportional loading. The data is used to assess whether existing strain gradient plasticity (SGP) theories are capable of reproducing complex deformation histories representative of micron-scale metal forming processes, for which non-proportional loading is common. The data is also used to explore an issue that has arisen in efforts to develop SGP that is sufficiently accurate for engineering applications and yet not overly complex. Specifically, using a combination of experimentation and computation, the paper examines the differences in predictions made by two classes of theories presently in the mainstream, termed “incremental” and “non-incremental”, when non-proportional plastic loading occurs at the micron scale. Orthogonal bend experiments are performed on Cu single crystal cantilever beams with square cross-sections that are symmetrically oriented with respect to the vertical and horizonal bending axes. In Stage 1, the force applied to the end of the cantilever is vertical, producing bending in the vertical plane. Abruptly, in Stage 2, a horizontal force is applied with either the vertical force held constant (force control) or the vertical end-displacement of the beam held constant (displacement control). Three cantilever sizes, with widths of the square cross-section of 2, 5 and 20 microns, have been tested. The strength elevation for cantilever widths decreasing from 20 to 2 microns is about a factor of three as compared to what would be expected based on conventional plasticity theory. The incremental and non-incremental SGP theories both capture the full non-proportional loading history, including the size effect. However, they differ in their predictions of behavior in the early portion of Stage 2, due to the abrupt change in the loading path. This difference will be assessed with the aid of experimental test data.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"206 ","pages":"Article 106375"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625003497","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Experiments involving abrupt non-collinear changes in the direction of loading in the plastic range have been performed on micron-scale, single crystal Cu cantilever beams to provide the first data of its kind on non-proportional loading. The data is used to assess whether existing strain gradient plasticity (SGP) theories are capable of reproducing complex deformation histories representative of micron-scale metal forming processes, for which non-proportional loading is common. The data is also used to explore an issue that has arisen in efforts to develop SGP that is sufficiently accurate for engineering applications and yet not overly complex. Specifically, using a combination of experimentation and computation, the paper examines the differences in predictions made by two classes of theories presently in the mainstream, termed “incremental” and “non-incremental”, when non-proportional plastic loading occurs at the micron scale. Orthogonal bend experiments are performed on Cu single crystal cantilever beams with square cross-sections that are symmetrically oriented with respect to the vertical and horizonal bending axes. In Stage 1, the force applied to the end of the cantilever is vertical, producing bending in the vertical plane. Abruptly, in Stage 2, a horizontal force is applied with either the vertical force held constant (force control) or the vertical end-displacement of the beam held constant (displacement control). Three cantilever sizes, with widths of the square cross-section of 2, 5 and 20 microns, have been tested. The strength elevation for cantilever widths decreasing from 20 to 2 microns is about a factor of three as compared to what would be expected based on conventional plasticity theory. The incremental and non-incremental SGP theories both capture the full non-proportional loading history, including the size effect. However, they differ in their predictions of behavior in the early portion of Stage 2, due to the abrupt change in the loading path. This difference will be assessed with the aid of experimental test data.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.