Fabrication of Highly Hydrophobic Inorganic–Organic Silica Membranes for Application in Organic Solvent Nanofiltration (OSN)

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Ikram Rana, , , Norihiro Moriyama, , , Hiroki Nagasawa, , , Toshinori Tsuru, , and , Masakoto Kanezashi*, 
{"title":"Fabrication of Highly Hydrophobic Inorganic–Organic Silica Membranes for Application in Organic Solvent Nanofiltration (OSN)","authors":"Ikram Rana,&nbsp;, ,&nbsp;Norihiro Moriyama,&nbsp;, ,&nbsp;Hiroki Nagasawa,&nbsp;, ,&nbsp;Toshinori Tsuru,&nbsp;, and ,&nbsp;Masakoto Kanezashi*,&nbsp;","doi":"10.1021/acs.iecr.5c01726","DOIUrl":null,"url":null,"abstract":"<p >Tetraethoxysilane (TEOS) membranes are widely used in gas separation but show limited liquid/nanofiltration performance due to their hydrophilic silanol (Si–OH) groups. To overcome this, trimethoxy(3,3,3-trifluoropropyl)silane (TMTFS) was incorporated into the TEOS network and calcined at 250, 550, and 700 °C under N<sub>2</sub>. Nanopermporometry using hexane and water confirmed a hydrophobic nanoporous structure at 550 °C, attributed to partially decomposed organic units from TMTFS. Higher calcination (≥700 °C) caused densification due to further decomposition, reducing performance. The hybrid membranes achieved an optimal water contact angle of 114° between 500 and 600 °C. Notably, the TEOS–TMTFS membrane calcined at 550 °C exhibited a hexane permeability of 7.6 × 10<sup>–12</sup> m<sup>3</sup> m<sup>–2</sup> s<sup>–1</sup> Pa<sup>–1</sup>, which remained stable after water exposure. These findings demonstrate successful modification of the TEOS network, enhancing hydrophobicity while minimizing densification effects.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"64 41","pages":"19960–19970"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.5c01726","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tetraethoxysilane (TEOS) membranes are widely used in gas separation but show limited liquid/nanofiltration performance due to their hydrophilic silanol (Si–OH) groups. To overcome this, trimethoxy(3,3,3-trifluoropropyl)silane (TMTFS) was incorporated into the TEOS network and calcined at 250, 550, and 700 °C under N2. Nanopermporometry using hexane and water confirmed a hydrophobic nanoporous structure at 550 °C, attributed to partially decomposed organic units from TMTFS. Higher calcination (≥700 °C) caused densification due to further decomposition, reducing performance. The hybrid membranes achieved an optimal water contact angle of 114° between 500 and 600 °C. Notably, the TEOS–TMTFS membrane calcined at 550 °C exhibited a hexane permeability of 7.6 × 10–12 m3 m–2 s–1 Pa–1, which remained stable after water exposure. These findings demonstrate successful modification of the TEOS network, enhancing hydrophobicity while minimizing densification effects.

Abstract Image

Abstract Image

用于有机溶剂纳滤(OSN)的高疏水性无机-有机二氧化硅膜的制备
四乙氧基硅烷(TEOS)膜广泛用于气体分离,但由于其亲水性硅醇(Si-OH)基团,其液/纳滤性能有限。为了克服这一问题,将三甲氧基(3,3,3-三氟丙基)硅烷(TMTFS)加入到TEOS网络中,并在250、550和700℃下N2下煅烧。采用正己烷和水进行纳米渗孔测定,在550°C时证实了一种疏水纳米孔结构,归因于TMTFS中部分分解的有机单元。较高的煅烧温度(≥700℃)会进一步分解导致致密化,降低性能。杂化膜在500 ~ 600℃之间的最佳水接触角为114°。值得注意的是,在550℃下煅烧的TEOS-TMTFS膜的己烷渗透率为7.6 × 10-12 m3 m-2 s-1 Pa-1,并且在遇水后保持稳定。这些发现证明了TEOS网络的成功修饰,增强了疏水性,同时最小化了致密效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信