Shengwei Lu , Yunqiu Miao , Dandan Wang , Dan Xu , Ruichi Liu , Xinrui Liu , Yang Zhang , Xinxin Zhang , Huanlong Qin
{"title":"Engineered tumor-symbiotic bacterial membrane nanovesicles enable precise immuno-chemotherapy of colorectal cancer","authors":"Shengwei Lu , Yunqiu Miao , Dandan Wang , Dan Xu , Ruichi Liu , Xinrui Liu , Yang Zhang , Xinxin Zhang , Huanlong Qin","doi":"10.1016/j.jconrel.2025.114291","DOIUrl":null,"url":null,"abstract":"<div><div>Gut microorganisms show promising therapeutic effects and drug delivery potential for colorectal cancer (CRC) treatment, but are limited by their insufficient targeting ability and side effects. <em>Fusobacterium nucleatum</em> (Fn) is a key symbiotic bacterium in CRC, which can preferentially accumulate in tumor tissues and invade tumor cells, while its tumorigenicity restricts the application in drug delivery. Herein, we engineered Fn with anchored PD-L1 antibody (αPD-L1), and then isolated the Fn membranes to construct bacterial membrane nanovesicles (ab-FMNVs) for precise delivery of chemotherapeutic drugs. The ab-FMNVs exploited Fn's inherent tumor colonization capabilities to achieve tumor-targeted delivery through the specific membrane protein FadA-mediated pathway, and modulated the PD-L1 immune checkpoint pathway for tumor immunotherapy. Simultaneously, ab-FMNVs were internalized into CT26 cells to release the chemotherapeutic agent doxorubicin, synergistically inhibiting tumor cell proliferation and metastasis. In a CRC-bearing mouse model, doxorubicin-loaded ab-FMNVs increased tumor accumulation and demonstrated superior antitumor efficacy against both primary and recurrent CRC progression without inducing any side effects. This innovative approach holds promise for precision cancer therapies by harnessing the symbiotic relationship between bacteria and CRC.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"388 ","pages":"Article 114291"},"PeriodicalIF":11.5000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925009046","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gut microorganisms show promising therapeutic effects and drug delivery potential for colorectal cancer (CRC) treatment, but are limited by their insufficient targeting ability and side effects. Fusobacterium nucleatum (Fn) is a key symbiotic bacterium in CRC, which can preferentially accumulate in tumor tissues and invade tumor cells, while its tumorigenicity restricts the application in drug delivery. Herein, we engineered Fn with anchored PD-L1 antibody (αPD-L1), and then isolated the Fn membranes to construct bacterial membrane nanovesicles (ab-FMNVs) for precise delivery of chemotherapeutic drugs. The ab-FMNVs exploited Fn's inherent tumor colonization capabilities to achieve tumor-targeted delivery through the specific membrane protein FadA-mediated pathway, and modulated the PD-L1 immune checkpoint pathway for tumor immunotherapy. Simultaneously, ab-FMNVs were internalized into CT26 cells to release the chemotherapeutic agent doxorubicin, synergistically inhibiting tumor cell proliferation and metastasis. In a CRC-bearing mouse model, doxorubicin-loaded ab-FMNVs increased tumor accumulation and demonstrated superior antitumor efficacy against both primary and recurrent CRC progression without inducing any side effects. This innovative approach holds promise for precision cancer therapies by harnessing the symbiotic relationship between bacteria and CRC.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.