Bin Qian, Wei Liang, Yumin Tu, Jiahao Zu, Keyuan Xu, Xinchen Ding, Yu Wang, Fangli Yu, Yu Bai
{"title":"Data-driven accelerated design of non-equimolar rare-earth silicates with phase stability and high CMAS resistance at 1550 °C","authors":"Bin Qian, Wei Liang, Yumin Tu, Jiahao Zu, Keyuan Xu, Xinchen Ding, Yu Wang, Fangli Yu, Yu Bai","doi":"10.1016/j.jallcom.2025.184100","DOIUrl":null,"url":null,"abstract":"The vast compositional space of non-equimolar systems requires data-driven methods to predict phase stability and CMAS resistance of rare-earth silicates (RESs). A dataset of phase structure and CMAS resistance was established by combining RESs synthesized in this work via sol–gel methods with open data. Rietveld-refined XRD data revealed linear correlations among <span><span><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">I</mi></mrow><mrow is=\"true\"><mo is=\"true\">max</mo></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">I</mi></mrow><mrow is=\"true\"><mo is=\"true\">max</mo></mrow></msub></math></script></span>, lattice constants, distortion, and <span><span><math><msub is=\"true\"><mrow is=\"true\"><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mi is=\"true\">r</mi></mrow><mrow is=\"true\"><mo is=\"true\">̄</mo></mrow></mover></mrow><mrow is=\"true\"><mi is=\"true\">M</mi><mi is=\"true\">e</mi></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mi is=\"true\">r</mi></mrow><mrow is=\"true\"><mo is=\"true\">̄</mo></mrow></mover></mrow><mrow is=\"true\"><mi is=\"true\">M</mi><mi is=\"true\">e</mi></mrow></msub></math></script></span>. A total of 37 potential descriptors were screened using machine learning. A voting ensemble classifier identified rare-earth disilicates compositions forming a stable <span><span><math><mi is=\"true\">β</mi></math></span><script type=\"math/mml\"><math><mi is=\"true\">β</mi></math></script></span>-phase, without enforcing a strict distinction between multi- and <span><span><math><mi is=\"true\">γ</mi></math></span><script type=\"math/mml\"><math><mi is=\"true\">γ</mi></math></script></span>-phase, due to varying testing temperatures across research groups. A corrosion grading function (CRG) was introduced to mathematically classify the CMAS resistance levels of RESs, reducing the dimensionality of experimental datasets. The XGBoost model was used to predict about 3.5 million non-equimolar compositions by systematic enumeration five elements from a cost-effective RE pool (Yb, Tm, Er, Y, Ho, Tb, Gd), identifying optimized formulations. Experimental validation at 1550 <span><span><math><mrow is=\"true\"><mo is=\"true\">°</mo><mi is=\"true\" mathvariant=\"normal\">C</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">°</mo><mi mathvariant=\"normal\" is=\"true\">C</mi></mrow></math></script></span> for 24 h on the composition <span><span><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mrow is=\"true\"><mo is=\"true\">(</mo><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">Gd</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">05</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">Er</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">1</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">Yb</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">375</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">Y</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">025</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">Tm</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">45</mn></mrow></msub><mo is=\"true\">)</mo></mrow></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">SiO</mi></mrow><mrow is=\"true\"><mn is=\"true\">5</mn></mrow></msub></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mrow is=\"true\"><mo is=\"true\">(</mo><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">Gd</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">05</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">Er</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">1</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">Yb</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">375</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">Y</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">025</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">Tm</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">45</mn></mrow></msub><mo is=\"true\">)</mo></mrow></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">SiO</mi></mrow><mrow is=\"true\"><mn is=\"true\">5</mn></mrow></msub></mrow></math></script></span> showed an average corrosion layer thickness of approximately <span><span><math><mrow is=\"true\"><mn is=\"true\">33</mn><mo is=\"true\">.</mo><mn is=\"true\">5</mn><mspace is=\"true\" width=\"0.33em\"></mspace><mi is=\"true\" mathvariant=\"normal\">μ</mi><mi is=\"true\" mathvariant=\"normal\">m</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mn is=\"true\">33</mn><mo is=\"true\">.</mo><mn is=\"true\">5</mn><mspace width=\"0.33em\" is=\"true\"></mspace><mi mathvariant=\"normal\" is=\"true\">μ</mi><mi mathvariant=\"normal\" is=\"true\">m</mi></mrow></math></script></span>, confirming the effectiveness of the data-driven approach in accelerating the design of non-equimolar RESs for environmental barrier coatings.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"75 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.184100","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The vast compositional space of non-equimolar systems requires data-driven methods to predict phase stability and CMAS resistance of rare-earth silicates (RESs). A dataset of phase structure and CMAS resistance was established by combining RESs synthesized in this work via sol–gel methods with open data. Rietveld-refined XRD data revealed linear correlations among , lattice constants, distortion, and . A total of 37 potential descriptors were screened using machine learning. A voting ensemble classifier identified rare-earth disilicates compositions forming a stable -phase, without enforcing a strict distinction between multi- and -phase, due to varying testing temperatures across research groups. A corrosion grading function (CRG) was introduced to mathematically classify the CMAS resistance levels of RESs, reducing the dimensionality of experimental datasets. The XGBoost model was used to predict about 3.5 million non-equimolar compositions by systematic enumeration five elements from a cost-effective RE pool (Yb, Tm, Er, Y, Ho, Tb, Gd), identifying optimized formulations. Experimental validation at 1550 for 24 h on the composition showed an average corrosion layer thickness of approximately , confirming the effectiveness of the data-driven approach in accelerating the design of non-equimolar RESs for environmental barrier coatings.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.