Muhammad Mominur Rahman, Anuj Bisht, Ruhul Amin, Ali Abouimrane, Chol-Bum M Kweon, Ilias Belharouak
{"title":"Thermal Dynamics and Lithium Plating Detection in High-Power Li-Ion Batteries for eVTOL Applications","authors":"Muhammad Mominur Rahman, Anuj Bisht, Ruhul Amin, Ali Abouimrane, Chol-Bum M Kweon, Ilias Belharouak","doi":"10.1002/aenm.202503292","DOIUrl":null,"url":null,"abstract":"The rapid electrification of aerial transportation is driving the need for high-performance Li-ion batteries that can operate reliably under stringent thermal and safety constraints. The unique mission profile of electric Vertical Take-off and Landing (eVTOL) aircraft necessitates a focused investigation into the thermal behavior and safety characteristics of these batteries. In this study, operando isothermal microcalorimetry is employed to examine the thermal evolution of Li-ion batteries under cycling conditions representative of eVTOL operations. These findings reveal that high-power discharge events—such as those during take-off and landing—shift the thermal response toward exothermic behavior, in contrast to the typically endothermic response expected under near-equilibrium cycling conditions. Additionally, the results suggest that advanced electrolyte formulations may help suppress excess heat generation, thereby improving battery safety. Notably, the calorimetric results exhibit a distinct thermal signature associated with lithium plating, offering a potential diagnostic for detecting Li plating during eVTOL operation. Overall, this study demonstrates the utility of isothermal microcalorimetry as a valuable tool for assessing thermal risks in Li-ion batteries for eVTOL applications, and highlights the importance of targeted design strategies to mitigate safety hazards during high-power demand scenarios.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"120 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202503292","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid electrification of aerial transportation is driving the need for high-performance Li-ion batteries that can operate reliably under stringent thermal and safety constraints. The unique mission profile of electric Vertical Take-off and Landing (eVTOL) aircraft necessitates a focused investigation into the thermal behavior and safety characteristics of these batteries. In this study, operando isothermal microcalorimetry is employed to examine the thermal evolution of Li-ion batteries under cycling conditions representative of eVTOL operations. These findings reveal that high-power discharge events—such as those during take-off and landing—shift the thermal response toward exothermic behavior, in contrast to the typically endothermic response expected under near-equilibrium cycling conditions. Additionally, the results suggest that advanced electrolyte formulations may help suppress excess heat generation, thereby improving battery safety. Notably, the calorimetric results exhibit a distinct thermal signature associated with lithium plating, offering a potential diagnostic for detecting Li plating during eVTOL operation. Overall, this study demonstrates the utility of isothermal microcalorimetry as a valuable tool for assessing thermal risks in Li-ion batteries for eVTOL applications, and highlights the importance of targeted design strategies to mitigate safety hazards during high-power demand scenarios.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.