Synergistic Enhancement of Electron and Hole Transport by Pd Single Atoms and Gradient-Distributed Ti3+ Species for High-Performance Photocatalytic Oxidation of CH4 to Oxygenates.

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kai Sun,Xinya Pei,Shengyao Wang,Xu-Sheng Wang,Panzhe Qiao,Defa Wang,Lequan Liu,Jinhua Ye,Hui Song
{"title":"Synergistic Enhancement of Electron and Hole Transport by Pd Single Atoms and Gradient-Distributed Ti3+ Species for High-Performance Photocatalytic Oxidation of CH4 to Oxygenates.","authors":"Kai Sun,Xinya Pei,Shengyao Wang,Xu-Sheng Wang,Panzhe Qiao,Defa Wang,Lequan Liu,Jinhua Ye,Hui Song","doi":"10.1002/anie.202517585","DOIUrl":null,"url":null,"abstract":"Photocatalytic oxidation of methane to liquid oxygenates offers a sustainable strategy for utilizing natural gas and reducing carbon emissions. However, the efficiency of current photocatalysts remains limited by poor charge carrier utilization, particularly the ineffective migration of holes that are crucial for C─H bond activation. Herein, we report a rationally engineered TiO2 photocatalyst incorporating atomically dispersed Pd and a gradient distribution of Ti3+ species, achieving a remarkable C1 oxygenates yield of 8.14 mmol·gcat -1·h-1 with 91.3% selectivity at room temperature, surpassing most state-of-the-art photocatalysts. Comprehensive characterizations and theoretical calculations reveal that Pd single atoms accelerate electron transfer and facilitate O2 dissociation, while the gradient-distributed Ti3+ species promote hole migration from the bulk to the surface, enabling efficient CH4 activation. These spatially separated charge pathways synergistically promote the formation of •CH3 and •OOH radicals, which couple to generate CH3OOH and subsequently convert into methanol and formaldehyde.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"44 1","pages":"e202517585"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202517585","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic oxidation of methane to liquid oxygenates offers a sustainable strategy for utilizing natural gas and reducing carbon emissions. However, the efficiency of current photocatalysts remains limited by poor charge carrier utilization, particularly the ineffective migration of holes that are crucial for C─H bond activation. Herein, we report a rationally engineered TiO2 photocatalyst incorporating atomically dispersed Pd and a gradient distribution of Ti3+ species, achieving a remarkable C1 oxygenates yield of 8.14 mmol·gcat -1·h-1 with 91.3% selectivity at room temperature, surpassing most state-of-the-art photocatalysts. Comprehensive characterizations and theoretical calculations reveal that Pd single atoms accelerate electron transfer and facilitate O2 dissociation, while the gradient-distributed Ti3+ species promote hole migration from the bulk to the surface, enabling efficient CH4 activation. These spatially separated charge pathways synergistically promote the formation of •CH3 and •OOH radicals, which couple to generate CH3OOH and subsequently convert into methanol and formaldehyde.
Pd单原子和梯度分布Ti3+物质协同增强CH4高效光催化氧化制氧合物的电子和空穴输运
甲烷光催化氧化为液态氧化物提供了一种利用天然气和减少碳排放的可持续策略。然而,目前光催化剂的效率仍然受到电荷载流子利用率低的限制,特别是对C─H键激活至关重要的空穴的无效迁移。在此,我们报道了一种合理设计的TiO2光催化剂,包含原子分散的Pd和Ti3+物种的梯度分布,在室温下获得了8.14 mmol·gcat -1·h-1的显着产率,选择性为91.3%,超过了大多数最先进的光催化剂。综合表征和理论计算表明,Pd单原子加速电子转移,促进O2解离,而梯度分布的Ti3+促进空穴从体向表面迁移,实现高效的CH4活化。这些空间分离的电荷途径协同促进•CH3和•OOH自由基的形成,两者结合生成CH3OOH,随后转化为甲醇和甲醛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信