Corrosion-Driven Ni3S4 Gradient in NiFe-LDH Enables Durable Industrial-Scale Water Electrolysis.

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yi Liu,Junpo Guo,Xupo Liu,Zhihan Liu,Tian Li,Shuang Wang,Congcong Zhang,Kailun Wang,Tianwen Xu,Weijie Kong,Zijun Chen,Jintao Huang,Junwu Xiao,Hongfang Liu,Huaiyu Shao,Deli Wang
{"title":"Corrosion-Driven Ni3S4 Gradient in NiFe-LDH Enables Durable Industrial-Scale Water Electrolysis.","authors":"Yi Liu,Junpo Guo,Xupo Liu,Zhihan Liu,Tian Li,Shuang Wang,Congcong Zhang,Kailun Wang,Tianwen Xu,Weijie Kong,Zijun Chen,Jintao Huang,Junwu Xiao,Hongfang Liu,Huaiyu Shao,Deli Wang","doi":"10.1002/anie.202516894","DOIUrl":null,"url":null,"abstract":"Designing low-cost yet highly efficient oxygen evolution reaction (OER) electrocatalysts is essential to enable sustainable green hydrogen generation. However, synthesis complexity, slow kinetics, and poor durability hinder industrial use. In this study, we present a corrosion-driven gradient engineering approach for the rapid, energy-free synthesis of Ni3S4/NiFe-LDH heterostructures on iron foam (IF) under ambient conditions. During spontaneous IF corrosion, a compositional and gradient structure forms, with Ni3S4 dominating the surface and NiFe-LDH enriching the core, establishing a continuous pathway for rapid electron transport. The catalyst exhibits superior OER performance, achieving low overpotentials of 297 mV in 1 M KOH and 326 mV in simulated seawater at 500 mA cm-2. Notably, in pure-water anion exchange membrane water electrolyzer, the catalyst demonstrates industrial-grade performance, sustaining 1 A cm-2 at 1.85 V with remarkable stability over 1,000 h of continuous operation. Operando spectroscopic studies unveil that SO4 2- leaching from surface Ni3S4 in the gradient structure provides dual protection against metal dissolution and chloride corrosion. Furthermore, the in situ formation of FeOOH synergistically stabilizes the catalytically critical Ni3+ species in NiOOH through strong Fe─O─Ni interfacial bonding, contributing to the exceptional durability. This work provides fundamental insights into corrosion-mediated catalyst design, offering a scalable pathway for developing industrial-grade electrocatalysts.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"214 1","pages":"e202516894"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202516894","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Designing low-cost yet highly efficient oxygen evolution reaction (OER) electrocatalysts is essential to enable sustainable green hydrogen generation. However, synthesis complexity, slow kinetics, and poor durability hinder industrial use. In this study, we present a corrosion-driven gradient engineering approach for the rapid, energy-free synthesis of Ni3S4/NiFe-LDH heterostructures on iron foam (IF) under ambient conditions. During spontaneous IF corrosion, a compositional and gradient structure forms, with Ni3S4 dominating the surface and NiFe-LDH enriching the core, establishing a continuous pathway for rapid electron transport. The catalyst exhibits superior OER performance, achieving low overpotentials of 297 mV in 1 M KOH and 326 mV in simulated seawater at 500 mA cm-2. Notably, in pure-water anion exchange membrane water electrolyzer, the catalyst demonstrates industrial-grade performance, sustaining 1 A cm-2 at 1.85 V with remarkable stability over 1,000 h of continuous operation. Operando spectroscopic studies unveil that SO4 2- leaching from surface Ni3S4 in the gradient structure provides dual protection against metal dissolution and chloride corrosion. Furthermore, the in situ formation of FeOOH synergistically stabilizes the catalytically critical Ni3+ species in NiOOH through strong Fe─O─Ni interfacial bonding, contributing to the exceptional durability. This work provides fundamental insights into corrosion-mediated catalyst design, offering a scalable pathway for developing industrial-grade electrocatalysts.
NiFe-LDH中腐蚀驱动的Ni3S4梯度实现持久的工业规模水电解。
设计低成本、高效的析氧反应(OER)电催化剂是实现可持续绿色制氢的关键。然而,合成复杂,动力学慢,耐久性差阻碍了工业应用。在这项研究中,我们提出了一种腐蚀驱动的梯度工程方法,用于在环境条件下在泡沫铁(IF)上快速、无能量地合成Ni3S4/NiFe-LDH异质结构。在自发IF腐蚀过程中,形成了一个组成和梯度结构,Ni3S4主导表面,NiFe-LDH富集核心,建立了一个连续的快速电子传递途径。催化剂表现出优异的OER性能,在1 M KOH条件下可达到297 mV的过电位,在500 mA cm-2的模拟海水条件下可达到326 mV的过电位。值得注意的是,在纯水阴离子交换膜水电解槽中,催化剂表现出工业级的性能,在1.85 V的电压下维持1 A cm-2,连续运行1000小时的稳定性非常好。Operando光谱研究揭示了在梯度结构中从Ni3S4表面浸出SO4 -提供了防止金属溶解和氯化物腐蚀的双重保护。此外,原位形成的FeOOH通过强大的Fe─O─Ni界面键,协同稳定了NiOOH中催化关键的Ni3+物质,有助于优异的耐久性。这项工作为腐蚀介导的催化剂设计提供了基本的见解,为开发工业级电催化剂提供了可扩展的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信