Yang An,Xuhao Yang,Ruilin Wang,Yu Gu,Yulin Min,Tierui Zhang,Jinyou Shen,Kan Zhang
{"title":"Improving Tandem Epoxidation Efficiency via Hydrogel Confinement Effect towards Photoelectrochemical Propylene Oxide Synthesis.","authors":"Yang An,Xuhao Yang,Ruilin Wang,Yu Gu,Yulin Min,Tierui Zhang,Jinyou Shen,Kan Zhang","doi":"10.1002/anie.202518020","DOIUrl":null,"url":null,"abstract":"Propylene oxide (PO) is among the world's most abundantly produced commodity chemicals, but it suffers from an energy-intensive and highly polluting industrial production route. In this work, we present a tandem photoelectrochemical (PEC) PO production system involving water oxidation to H2O2 via a BiVO4 photoanode and subsequent propylene epoxidation by titanium silicalite-1 (TS-1) catalyst-loaded hydrogel using in situ-generated H2O2. The hydrogel encapsulated on the BiVO4 photoanode surface provides a confined space to enhance H2O2 enrichment, as well as propylene transport, thereby reinforcing the epoxidation kinetics with conversion efficiencies of 94.06% for H2O2 and 75.55% for propylene. With the assistance of solar energy, the PO productivity per unit of electricity can reach 6.10 mol·cm-2·kWh-1, which is the lowest electricity consumption for existing alkene epoxidation technology. For industrial scalability, a multi-pass light absorption configuration is designed for decimeter-sized reactor to address the issue of a plunge in solar to chemical (STC) efficiency arising from the scale-up of the photoanode, achieving the optimum light harvesting efficiency of 98.21% and STC efficiency of 5.57% which is comparable to its 1 cm2 counterpart (86% retention). The continuous PO productivity in flowing electrolyte can reach 1.74 mmol·h-1 with a steady selectivity of 91.05% under AM 1.5G illumination. Finally, a techno-economic analysis is provided to offer targets that need to be met for economically compelling industrial implementation.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"2 1","pages":"e202518020"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202518020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Propylene oxide (PO) is among the world's most abundantly produced commodity chemicals, but it suffers from an energy-intensive and highly polluting industrial production route. In this work, we present a tandem photoelectrochemical (PEC) PO production system involving water oxidation to H2O2 via a BiVO4 photoanode and subsequent propylene epoxidation by titanium silicalite-1 (TS-1) catalyst-loaded hydrogel using in situ-generated H2O2. The hydrogel encapsulated on the BiVO4 photoanode surface provides a confined space to enhance H2O2 enrichment, as well as propylene transport, thereby reinforcing the epoxidation kinetics with conversion efficiencies of 94.06% for H2O2 and 75.55% for propylene. With the assistance of solar energy, the PO productivity per unit of electricity can reach 6.10 mol·cm-2·kWh-1, which is the lowest electricity consumption for existing alkene epoxidation technology. For industrial scalability, a multi-pass light absorption configuration is designed for decimeter-sized reactor to address the issue of a plunge in solar to chemical (STC) efficiency arising from the scale-up of the photoanode, achieving the optimum light harvesting efficiency of 98.21% and STC efficiency of 5.57% which is comparable to its 1 cm2 counterpart (86% retention). The continuous PO productivity in flowing electrolyte can reach 1.74 mmol·h-1 with a steady selectivity of 91.05% under AM 1.5G illumination. Finally, a techno-economic analysis is provided to offer targets that need to be met for economically compelling industrial implementation.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.