Cocrystal effect-driven ultrafast phase-transition ionogel for dynamically switchable adhesion interfaces.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yan Zheng,Zhikai Dong,Shaochuan Luo,Qi Jin,Songlin Tao,Yichen Ding,Tang Li,Xiaoliang Wang,Dongshan Zhou,Shuangjun Chen
{"title":"Cocrystal effect-driven ultrafast phase-transition ionogel for dynamically switchable adhesion interfaces.","authors":"Yan Zheng,Zhikai Dong,Shaochuan Luo,Qi Jin,Songlin Tao,Yichen Ding,Tang Li,Xiaoliang Wang,Dongshan Zhou,Shuangjun Chen","doi":"10.1038/s41467-025-63853-w","DOIUrl":null,"url":null,"abstract":"Smart adhesion materials are paramount to the construction of dynamic adhesion interfaces in domains such as flexible electronics, soft robotics, and precision manufacturing. Research focuses on resolving the inherent contradiction between material adhesion and switchability. Herein, we report a poly(ionic liquid)/ionic liquid cocrystal ionogel that combines the advantages of polymer and small-molecule phase transitions, enabling rapid and repeated switching between strong-weak adhesion states while simultaneously converting adhesion changes into electrical signal feedback to the external environment. The study shows that the long alkyl chains in the two components form a cocrystal structure, with the crystallization-melting temperature precisely controlled by the alkyl chain length (-10 to 60 °C). The ultrafast phase transition (t1/2 < 1 ms) of the ionogels leads to significant changes in the viscoelastic/electrical behavior, thereby inducing switching in adhesion (peel strength >1000 N/m, switching ratio >120) and electrical properties (switching ratio: 10²-10³). Based on the adhesion-electrical coupling effect, we design a dual-mode smart capture patch with dynamically feedback-regulated adhesion to enable objects' free pickup and release. This work provides a pathway for designing smart adhesive materials for dynamic adhesion interfaces.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"8 1","pages":"8792"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63853-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Smart adhesion materials are paramount to the construction of dynamic adhesion interfaces in domains such as flexible electronics, soft robotics, and precision manufacturing. Research focuses on resolving the inherent contradiction between material adhesion and switchability. Herein, we report a poly(ionic liquid)/ionic liquid cocrystal ionogel that combines the advantages of polymer and small-molecule phase transitions, enabling rapid and repeated switching between strong-weak adhesion states while simultaneously converting adhesion changes into electrical signal feedback to the external environment. The study shows that the long alkyl chains in the two components form a cocrystal structure, with the crystallization-melting temperature precisely controlled by the alkyl chain length (-10 to 60 °C). The ultrafast phase transition (t1/2 < 1 ms) of the ionogels leads to significant changes in the viscoelastic/electrical behavior, thereby inducing switching in adhesion (peel strength >1000 N/m, switching ratio >120) and electrical properties (switching ratio: 10²-10³). Based on the adhesion-electrical coupling effect, we design a dual-mode smart capture patch with dynamically feedback-regulated adhesion to enable objects' free pickup and release. This work provides a pathway for designing smart adhesive materials for dynamic adhesion interfaces.
用于动态切换粘附界面的共晶效应驱动的超快相变离子凝胶。
智能粘附材料对于柔性电子、软机器人和精密制造等领域的动态粘附界面的构建至关重要。研究的重点是解决材料的粘附性和可切换性之间的内在矛盾。在此,我们报道了一种结合聚合物和小分子相变优点的聚(离子液体)/离子液体共晶离子凝胶,它可以在强-弱粘附状态之间快速反复切换,同时将粘附变化转化为对外部环境的电信号反馈。研究表明,两组分中的长烷基链形成共晶结构,结晶熔化温度由烷基链长度精确控制(-10 ~ 60℃)。超快相变(t1/2 1000 N/m,开关比>120)和电学性能(开关比:10²-10³)。基于粘附-电耦合效应,设计了一种动态反馈调节粘附的双模智能捕获贴片,实现了物体的自由拾取和释放。这项工作为动态粘附界面的智能粘附材料的设计提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信