{"title":"Supramolecular Interface Engineering via Interdiffusion for Reusable and Dismantlable Polymer Adhesion.","authors":"Kenji Yamaoka,Takuma Wada,Iori Ogasa,Takeru Komyo,Chao Luo,Ryohei Ikura,Masahiro Hino,Masako Yamada,Hideki Seto,Yoshihisa Fujii,Yasutomo Uetsuji,Yoshinori Takashima","doi":"10.1002/adma.202507939","DOIUrl":null,"url":null,"abstract":"Controllable adhesion that enables both reuse and dismantling is a key requirement for sustainable materials and device integration. Here,a polymeric adhesion system is demonstrated based on reversible interactions at the interface, in which the association and dissociation of supramolecular complexes are externally regulated by thermal and chemical stimuli. By tuning the glass transition temperature (Tg) of the polymers, chain mobility and complex reformation are simultaneously optimized, leading to enhanced interdiffusion and bond recombination at the adhesion interface. Neutron reflectivity (NR) measurements with deuterium labeling revealed that the interfacial width increased with annealing temperature, reaching up to 24.4 nm at 200 °C after 24 hours. The presence of reversible bonds suppressed polymer interdiffusion despite promoting adhesion strength. The resulting materials exhibit excellent reusability and dismantlability under mild stimuli, with strong potential for applications in recyclable electronics, automotive manufacturing, and temporary assembly technologies.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"98 1","pages":"e07939"},"PeriodicalIF":26.8000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202507939","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Controllable adhesion that enables both reuse and dismantling is a key requirement for sustainable materials and device integration. Here,a polymeric adhesion system is demonstrated based on reversible interactions at the interface, in which the association and dissociation of supramolecular complexes are externally regulated by thermal and chemical stimuli. By tuning the glass transition temperature (Tg) of the polymers, chain mobility and complex reformation are simultaneously optimized, leading to enhanced interdiffusion and bond recombination at the adhesion interface. Neutron reflectivity (NR) measurements with deuterium labeling revealed that the interfacial width increased with annealing temperature, reaching up to 24.4 nm at 200 °C after 24 hours. The presence of reversible bonds suppressed polymer interdiffusion despite promoting adhesion strength. The resulting materials exhibit excellent reusability and dismantlability under mild stimuli, with strong potential for applications in recyclable electronics, automotive manufacturing, and temporary assembly technologies.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.