Percolation-Driven Optimization of MWCNT/CoMn2O4/PVA Metacomposites for Electromagnetic Wave Absorption and Interfacial Hydrophobicity in Optoelectronic Applications.

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Reza Gholipur,Haider Al-Luhaibi
{"title":"Percolation-Driven Optimization of MWCNT/CoMn2O4/PVA Metacomposites for Electromagnetic Wave Absorption and Interfacial Hydrophobicity in Optoelectronic Applications.","authors":"Reza Gholipur,Haider Al-Luhaibi","doi":"10.1021/acs.langmuir.5c04041","DOIUrl":null,"url":null,"abstract":"The escalating demand for multifunctional nanomaterials in electromagnetic interference (EMI) mitigation and optoelectronic applications has highlighted the need for materials with optimized electromagnetic absorption and tailored surface properties. A significant challenge is enhancing electromagnetic wave absorption while controlling interfacial wettability to enable practical deployment in diverse environments. This study addresses these issues by synthesizing MWCNT/CoMn2O4/PVA metacomposites (MCP1-MCP5) with MWCNT weight fractions from 0.011 to 0.166 using in situ polymerization, followed by characterization via FESEM, BET/BJH, and electromagnetic testing (0-100 MHz). Results demonstrate that MCP3 (0.044 MWCNT) achieves the lowest reflection loss (∼-32.908 dB at 10 MHz, 1 mm thickness) 78 and a contact angle of ∼39°, indicating moderate wettability. MCP5 (0.166 MWCNT) exhibits an AC conductivity of 8.8 × 10-3 at 100 MHz, enhancing absorption through improved conductive losses. These findings reveal percolation-driven tunability, positioning these metacomposites as promising candidates for EMI absorption and surface-engineered optoelectronic applications.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"75 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c04041","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating demand for multifunctional nanomaterials in electromagnetic interference (EMI) mitigation and optoelectronic applications has highlighted the need for materials with optimized electromagnetic absorption and tailored surface properties. A significant challenge is enhancing electromagnetic wave absorption while controlling interfacial wettability to enable practical deployment in diverse environments. This study addresses these issues by synthesizing MWCNT/CoMn2O4/PVA metacomposites (MCP1-MCP5) with MWCNT weight fractions from 0.011 to 0.166 using in situ polymerization, followed by characterization via FESEM, BET/BJH, and electromagnetic testing (0-100 MHz). Results demonstrate that MCP3 (0.044 MWCNT) achieves the lowest reflection loss (∼-32.908 dB at 10 MHz, 1 mm thickness) 78 and a contact angle of ∼39°, indicating moderate wettability. MCP5 (0.166 MWCNT) exhibits an AC conductivity of 8.8 × 10-3 at 100 MHz, enhancing absorption through improved conductive losses. These findings reveal percolation-driven tunability, positioning these metacomposites as promising candidates for EMI absorption and surface-engineered optoelectronic applications.
MWCNT/CoMn2O4/PVA复合材料在光电应用中的电磁波吸收和界面疏水性的渗透驱动优化。
在电磁干扰(EMI)缓解和光电子应用中对多功能纳米材料的需求不断增加,突出了对具有优化电磁吸收和定制表面特性的材料的需求。一项重大挑战是在控制界面润湿性的同时增强电磁波吸收,以实现在各种环境中的实际部署。本研究通过原位聚合合成MWCNT质量分数为0.011 ~ 0.166的MWCNT/CoMn2O4/PVA超复合材料(MCP1-MCP5),然后通过FESEM、BET/BJH和电磁测试(0-100 MHz)进行表征,解决了这些问题。结果表明,MCP3 (0.044 MWCNT)具有最低的反射损耗(在10 MHz, 1 mm厚度时为~ -32.908 dB) 78,接触角为~ 39°,具有中等润湿性。MCP5 (0.166 MWCNT)在100 MHz时的交流电导率为8.8 × 10-3,通过改善导电损耗来增强吸收。这些发现揭示了渗透驱动的可调性,将这些超复合材料定位为EMI吸收和表面工程光电应用的有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信