Yi Wei,Yan Zhang,Yawen Li,Chen Li,Yuxuan Wang,Zhishan Luo,Yulian Liu,Huimin Kang,Xihan Chen,Zewei Quan
{"title":"Chiral recognition via symmetry-dependent luminescence in zero-dimensional hybrid copper halides.","authors":"Yi Wei,Yan Zhang,Yawen Li,Chen Li,Yuxuan Wang,Zhishan Luo,Yulian Liu,Huimin Kang,Xihan Chen,Zewei Quan","doi":"10.1038/s41467-025-63835-y","DOIUrl":null,"url":null,"abstract":"Chiral recognition through fluorescence changes enables the rapid and sensitive determination of enantiomers. However, the rational design and synthesis of fluorescent probes for efficient chiral recognition remain a challenge. Here we present a novel platform for chiral recognition based on zero-dimensional hybrid copper halides with unique symmetry-dependent properties. The use of mesomeric 1,2-diaminocyclohexane (DACH) ligands promotes the formation of centrosymmetric, non-luminescent Cu2I64- units. The incorporation of enantiopure S- or R-DACH ligands into these mesomeric compounds breaks their symmetry, spontaneously transforming them into chiral compounds and generating Cu4I62- units that exhibit intense circularly polarized luminescence. Additionally, introducing opposite chiral ligands into these chiral compounds leads to the formation of racemic, non-luminescent CuI32- units, whereas the addition of same-chirality ligands preserves the structure and optical properties of the chiral Cu4I62- units. This enantioselective response by utilizing symmetry-dependent optical properties offers a pathway toward advanced chiral sensing technologies.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"98 1","pages":"8781"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63835-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chiral recognition through fluorescence changes enables the rapid and sensitive determination of enantiomers. However, the rational design and synthesis of fluorescent probes for efficient chiral recognition remain a challenge. Here we present a novel platform for chiral recognition based on zero-dimensional hybrid copper halides with unique symmetry-dependent properties. The use of mesomeric 1,2-diaminocyclohexane (DACH) ligands promotes the formation of centrosymmetric, non-luminescent Cu2I64- units. The incorporation of enantiopure S- or R-DACH ligands into these mesomeric compounds breaks their symmetry, spontaneously transforming them into chiral compounds and generating Cu4I62- units that exhibit intense circularly polarized luminescence. Additionally, introducing opposite chiral ligands into these chiral compounds leads to the formation of racemic, non-luminescent CuI32- units, whereas the addition of same-chirality ligands preserves the structure and optical properties of the chiral Cu4I62- units. This enantioselective response by utilizing symmetry-dependent optical properties offers a pathway toward advanced chiral sensing technologies.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.