Attosecond quantum uncertainty dynamics and ultrafast squeezed light for quantum communication.

IF 23.4 Q1 OPTICS
Mohamed Sennary,Javier Rivera-Dean,Mohamed ElKabbash,Vladimir Pervak,Maciej Lewenstein,Mohammed Th Hassan
{"title":"Attosecond quantum uncertainty dynamics and ultrafast squeezed light for quantum communication.","authors":"Mohamed Sennary,Javier Rivera-Dean,Mohamed ElKabbash,Vladimir Pervak,Maciej Lewenstein,Mohammed Th Hassan","doi":"10.1038/s41377-025-02055-x","DOIUrl":null,"url":null,"abstract":"Advancements in quantum optics and squeezed light generation have revolutionized various fields of quantum science over the past three decades, with notable applications such as gravitational wave detection. Here, we extend the use of squeezed light to the realm of ultrafast quantum science. We demonstrate the generation of the shortest ultrafast synthesized quantum light pulses spanning 0.33 to 0.73 PHz by a degenerate four-wave mixing nonlinear process. Experimental metrology results confirm that these pulses exhibit amplitude squeezing, which is consistent with theoretical predictions. Moreover, we observe the temporal dynamics of amplitude uncertainty of the squeezed light, demonstrating that quantum uncertainty of light is controllable and tunable in real time. Additionally, we demonstrate control over the quantum state of light by switching between amplitude and phase squeezing. Our ability to generate and manipulate ultrafast, squeezed, synthesized light waveforms with attosecond resolution unlocks exciting possibilities for quantum technologies, including petahertz-scale secure quantum communication, quantum computing, and ultrafast spectroscopy. As an example, we introduce an attosecond quantum encryption protocol leveraging squeezed synthesized light for secure digital communication at unprecedented speeds. This work paves the way for exploring quantum uncertainty dynamics and establishes the foundation for the emerging ultrafast and attosecond quantum science fields.","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"6 1","pages":"350"},"PeriodicalIF":23.4000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-02055-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in quantum optics and squeezed light generation have revolutionized various fields of quantum science over the past three decades, with notable applications such as gravitational wave detection. Here, we extend the use of squeezed light to the realm of ultrafast quantum science. We demonstrate the generation of the shortest ultrafast synthesized quantum light pulses spanning 0.33 to 0.73 PHz by a degenerate four-wave mixing nonlinear process. Experimental metrology results confirm that these pulses exhibit amplitude squeezing, which is consistent with theoretical predictions. Moreover, we observe the temporal dynamics of amplitude uncertainty of the squeezed light, demonstrating that quantum uncertainty of light is controllable and tunable in real time. Additionally, we demonstrate control over the quantum state of light by switching between amplitude and phase squeezing. Our ability to generate and manipulate ultrafast, squeezed, synthesized light waveforms with attosecond resolution unlocks exciting possibilities for quantum technologies, including petahertz-scale secure quantum communication, quantum computing, and ultrafast spectroscopy. As an example, we introduce an attosecond quantum encryption protocol leveraging squeezed synthesized light for secure digital communication at unprecedented speeds. This work paves the way for exploring quantum uncertainty dynamics and establishes the foundation for the emerging ultrafast and attosecond quantum science fields.
用于量子通信的阿秒量子不确定动力学和超快压缩光。
在过去的三十年里,量子光学和压缩光产生的进步彻底改变了量子科学的各个领域,其中引人注目的应用包括引力波探测。在这里,我们将压缩光的使用扩展到超快量子科学领域。通过简并四波混合非线性过程,我们证明了最短的超快合成量子光脉冲的产生,其长度为0.33至0.73 PHz。实验测量结果证实这些脉冲表现出幅度压缩,这与理论预测一致。此外,我们还观察了压缩光振幅不确定度的时间动态,证明了光的量子不确定度是实时可控和可调的。此外,我们还演示了通过在振幅和相位压缩之间切换来控制光的量子态。我们以阿秒分辨率生成和操纵超快、压缩、合成光波形的能力,为量子技术解锁了令人兴奋的可能性,包括佩赫兹级安全量子通信、量子计算和超快光谱学。作为一个例子,我们介绍了一种阿秒量子加密协议,利用压缩合成光以前所未有的速度进行安全的数字通信。这项工作为探索量子不确定性动力学铺平了道路,并为新兴的超快和阿秒量子科学领域奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信