Breaking the Humidity Barrier in Ozone Decomposition: Dual-Engineered Mn-Co Catalyst with Vacancy-Orbital Synergy.

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Lei Liu,Ming Ouyang,Ning Wu,Chuying Qiu,Ning Wang,Chen Yang,Peng Liu,Peirong Chen,Junliang Wu,Mingli Fu,Yun Hu,Daiqi Ye
{"title":"Breaking the Humidity Barrier in Ozone Decomposition: Dual-Engineered Mn-Co Catalyst with Vacancy-Orbital Synergy.","authors":"Lei Liu,Ming Ouyang,Ning Wu,Chuying Qiu,Ning Wang,Chen Yang,Peng Liu,Peirong Chen,Junliang Wu,Mingli Fu,Yun Hu,Daiqi Ye","doi":"10.1021/acs.est.5c06481","DOIUrl":null,"url":null,"abstract":"Ground-level ozone poses significant health risks in indoor environments. However, conventional manganese-based catalysts suffer from rapid deactivation under humid conditions caused by competitive water adsorption and the occupation of active sites by the O22- intermediates. The atomic-level design of Mn3+/Co2+ sites integrates vacancy defect engineering with heterometallic orbital coupling, overcoming the humidity-induced deactivation bottleneck in ozone catalysis. In situ spectra and theoretical calculations confirm that this dual-engineering strategy alters the surface electronic configuration, weakens water adsorption energy, and accelerates O22- dissociation through a low-energy-barrier pathway. Remarkably, this self-sustaining catalyst requires no auxiliary energy (heat or light), allowing seamless integration into air purification systems via simple coating techniques. This innovation opens new possibilities for combating indoor ozone pollution in energy-efficient manner, maintaining stable efficiency (at least 100 h) under realistic humid conditions (25 °C, 4 vol % H2O).","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"21 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.5c06481","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ground-level ozone poses significant health risks in indoor environments. However, conventional manganese-based catalysts suffer from rapid deactivation under humid conditions caused by competitive water adsorption and the occupation of active sites by the O22- intermediates. The atomic-level design of Mn3+/Co2+ sites integrates vacancy defect engineering with heterometallic orbital coupling, overcoming the humidity-induced deactivation bottleneck in ozone catalysis. In situ spectra and theoretical calculations confirm that this dual-engineering strategy alters the surface electronic configuration, weakens water adsorption energy, and accelerates O22- dissociation through a low-energy-barrier pathway. Remarkably, this self-sustaining catalyst requires no auxiliary energy (heat or light), allowing seamless integration into air purification systems via simple coating techniques. This innovation opens new possibilities for combating indoor ozone pollution in energy-efficient manner, maintaining stable efficiency (at least 100 h) under realistic humid conditions (25 °C, 4 vol % H2O).
打破臭氧分解中的湿度障碍:具有空位-轨道协同作用的双工程Mn-Co催化剂。
地面臭氧对室内环境构成重大健康风险。然而,传统的锰基催化剂在潮湿条件下由于水的竞争性吸附和O22-中间体占据活性位点而迅速失活。Mn3+/Co2+位点的原子水平设计将空位缺陷工程与异金属轨道耦合相结合,克服了臭氧催化中湿度引起的失活瓶颈。原位光谱和理论计算证实,这种双重工程策略改变了表面电子构型,削弱了水的吸附能,并通过低能垒途径加速了O22-解离。值得注意的是,这种自我维持的催化剂不需要辅助能源(热或光),可以通过简单的涂层技术无缝集成到空气净化系统中。这一创新为以节能方式对抗室内臭氧污染开辟了新的可能性,在实际潮湿条件下(25°C, 4 vol % H2O)保持稳定的效率(至少100小时)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信