Reaction-induced departures from continuum Navier-Stokes turbulence.

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Christopher T Williams,Ryan M McMullen,Michael A Gallis
{"title":"Reaction-induced departures from continuum Navier-Stokes turbulence.","authors":"Christopher T Williams,Ryan M McMullen,Michael A Gallis","doi":"10.1073/pnas.2508608122","DOIUrl":null,"url":null,"abstract":"Reactive hydrodynamic turbulence is an inherently multiscale phenomenon, characterized by the separation between energy-containing, viscous, and molecular length and time scales. The separation between the viscous scale (the Kolmogorov scale) and the molecular mean free path ostensibly justifies a macroscopic description of reactive turbulence via the Navier-Stokes (NS) equations. However, here we use molecular-level simulations to demonstrate that exothermic bimolecular reactions can cause the NS description of turbulence to break down in the near-continuum regime. Sufficiently energetic heat-releasing reactive collisions strongly distort the Maxwell-Boltzmann velocity distribution function, modifying not only the macroscopic chemical rate law but the kinetic-energy-transfer processes as well. This translational nonequilibrium ultimately introduces significant departures from the NS description in the kinetic energy spectra at scales orders of magnitude larger than both the molecular mean free path and the Kolmogorov length scale. These departures prove substantial enough to meaningfully alter integrated quantities, including the overall turbulence kinetic energy itself.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"98 1","pages":"e2508608122"},"PeriodicalIF":9.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2508608122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Reactive hydrodynamic turbulence is an inherently multiscale phenomenon, characterized by the separation between energy-containing, viscous, and molecular length and time scales. The separation between the viscous scale (the Kolmogorov scale) and the molecular mean free path ostensibly justifies a macroscopic description of reactive turbulence via the Navier-Stokes (NS) equations. However, here we use molecular-level simulations to demonstrate that exothermic bimolecular reactions can cause the NS description of turbulence to break down in the near-continuum regime. Sufficiently energetic heat-releasing reactive collisions strongly distort the Maxwell-Boltzmann velocity distribution function, modifying not only the macroscopic chemical rate law but the kinetic-energy-transfer processes as well. This translational nonequilibrium ultimately introduces significant departures from the NS description in the kinetic energy spectra at scales orders of magnitude larger than both the molecular mean free path and the Kolmogorov length scale. These departures prove substantial enough to meaningfully alter integrated quantities, including the overall turbulence kinetic energy itself.
反应引起的偏离连续介质的纳维-斯托克斯湍流。
反应性流体动力湍流是一种固有的多尺度现象,其特征是含能、粘性、分子长度和时间尺度的分离。黏性尺度(Kolmogorov尺度)和分子平均自由程之间的分离表面上证明了通过Navier-Stokes (NS)方程对反应性湍流的宏观描述是正确的。然而,在这里,我们使用分子水平的模拟来证明放热双分子反应可以导致湍流的NS描述在近连续统状态下被打破。足够高能的放热反应碰撞强烈地扭曲了麦克斯韦-玻尔兹曼速度分布函数,不仅改变了宏观的化学速率定律,而且改变了动能传递过程。这种平移不平衡最终在比分子平均自由程和Kolmogorov长度尺度大几个数量级的尺度上引入了与动能谱中NS描述的显著偏离。事实证明,这些偏离足以有意义地改变积分量,包括总体湍流动能本身。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信