Xavier Lambin,Mike Begon,Sarah J Burthe,Isla M Graham,James L MacKinnon,Sandra Telfer,Madan K Oli
{"title":"Density-dependent recruitment but not survival drives cyclic dynamics in a field vole population.","authors":"Xavier Lambin,Mike Begon,Sarah J Burthe,Isla M Graham,James L MacKinnon,Sandra Telfer,Madan K Oli","doi":"10.1073/pnas.2509516122","DOIUrl":null,"url":null,"abstract":"Arguably, the most fundamental question in population ecology is what drives patterns in the abundance of populations? Small rodents exhibiting regular multiannual cycles in abundance have long been a test bed for addressing this question. The prevailing orthodoxy, the predation hypothesis, contends that nonmigratory, specialist predators are necessary, and specialist and generalist predators, combined, are both necessary and sufficient, for causing population cycles. Thus, variations in survival, from predation, are the key drivers of the cycles. However, this, and other competing theories, have hitherto lacked supportive demographic evidence and hence a solid evidential foundation. Here, we provide such evidence, analyzing 10 y of monthly data from a cyclic field vole population. We find, contrary to the prevailing orthodoxy, that recruitment, not survival, varied substantially from phase to phase in the cycles, made the major contribution to variations in population growth rate, and had cycle-phase-specific negative delayed density dependence. These results, their consistency with what is known from other systems, and the weak demographic foundations of the predation hypothesis, together suggest recruitment, specifically breeding-season length, not predation, as the cycles' driving force. They therefore suggest that re-evaluation of the importance of the various determinants of population abundances, more generally, may be necessary.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"32 1","pages":"e2509516122"},"PeriodicalIF":9.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2509516122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Arguably, the most fundamental question in population ecology is what drives patterns in the abundance of populations? Small rodents exhibiting regular multiannual cycles in abundance have long been a test bed for addressing this question. The prevailing orthodoxy, the predation hypothesis, contends that nonmigratory, specialist predators are necessary, and specialist and generalist predators, combined, are both necessary and sufficient, for causing population cycles. Thus, variations in survival, from predation, are the key drivers of the cycles. However, this, and other competing theories, have hitherto lacked supportive demographic evidence and hence a solid evidential foundation. Here, we provide such evidence, analyzing 10 y of monthly data from a cyclic field vole population. We find, contrary to the prevailing orthodoxy, that recruitment, not survival, varied substantially from phase to phase in the cycles, made the major contribution to variations in population growth rate, and had cycle-phase-specific negative delayed density dependence. These results, their consistency with what is known from other systems, and the weak demographic foundations of the predation hypothesis, together suggest recruitment, specifically breeding-season length, not predation, as the cycles' driving force. They therefore suggest that re-evaluation of the importance of the various determinants of population abundances, more generally, may be necessary.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.