Magnesium Recovery from Nanofiltration Brine by Membrane Distillation Crystallization.

ACS Sustainable Resource Management Pub Date : 2025-08-31 eCollection Date: 2025-09-25 DOI:10.1021/acssusresmgt.5c00219
Asif Saud, Aamer Ali, Cejna Anna Quist-Jensen
{"title":"Magnesium Recovery from Nanofiltration Brine by Membrane Distillation Crystallization.","authors":"Asif Saud, Aamer Ali, Cejna Anna Quist-Jensen","doi":"10.1021/acssusresmgt.5c00219","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane distillation crystallization (MDCr) is gaining recognition as a sustainable and cost-effective method for treating hypersaline brine. The current study explores magnesium sulfate (MgSO<sub>4</sub>) crystallization by using MDCr from synthetic nanofiltration (NF) brine. The study evaluates three feed temperature conditions (41.8 °C, 54.9 °C, and 64.5 °C), along with the corresponding permeate temperatures (19.9 °C, 23.2 °C, and 26.2 °C) and flow rates (1.3 and 0.7 L/min). The tested conditions revealed that temperature impacts the MDCr performance and MgSO<sub>4</sub> crystallization more effectively than the flow rate. The presence of other ions (Na<sup>+</sup>, K<sup>+</sup>, and Cl<sup>‑</sup>) decreases the solubility of MgSO<sub>4</sub> (compared with the theoretical solubility at the tested temperature) and increases the tendency of co-crystallization with NaCl, which poses a significant challenge in the final separation stage. The examined process conditions (feed temperature 64.5 ± 0.5 and flow rate 1.3 L/min) successfully delay the crystallization of MgSO<sub>4</sub>, toward a higher water recovery factor (65.98 %), owing to the higher solubility of MgSO<sub>4</sub> at higher temperatures, which minimizes the extent of co-crystallization. The recovered crystals (a mixture of NaCl and MgSO<sub>4</sub>) are then separated by selectively dissolving NaCl in a saturated solution of MgSO<sub>4</sub>. No compromise with the permeate purity (<5 μm/cm) was observed under all tested conditions.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"2 9","pages":"1709-1718"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12481720/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acssusresmgt.5c00219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/25 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane distillation crystallization (MDCr) is gaining recognition as a sustainable and cost-effective method for treating hypersaline brine. The current study explores magnesium sulfate (MgSO4) crystallization by using MDCr from synthetic nanofiltration (NF) brine. The study evaluates three feed temperature conditions (41.8 °C, 54.9 °C, and 64.5 °C), along with the corresponding permeate temperatures (19.9 °C, 23.2 °C, and 26.2 °C) and flow rates (1.3 and 0.7 L/min). The tested conditions revealed that temperature impacts the MDCr performance and MgSO4 crystallization more effectively than the flow rate. The presence of other ions (Na+, K+, and Cl) decreases the solubility of MgSO4 (compared with the theoretical solubility at the tested temperature) and increases the tendency of co-crystallization with NaCl, which poses a significant challenge in the final separation stage. The examined process conditions (feed temperature 64.5 ± 0.5 and flow rate 1.3 L/min) successfully delay the crystallization of MgSO4, toward a higher water recovery factor (65.98 %), owing to the higher solubility of MgSO4 at higher temperatures, which minimizes the extent of co-crystallization. The recovered crystals (a mixture of NaCl and MgSO4) are then separated by selectively dissolving NaCl in a saturated solution of MgSO4. No compromise with the permeate purity (<5 μm/cm) was observed under all tested conditions.

膜蒸馏结晶法从纳滤盐水中回收镁。
膜蒸馏结晶(MDCr)作为一种可持续且经济的处理高盐盐水的方法正得到越来越多的认可。本研究以合成纳滤(NF)盐水为原料,探讨了mcr对硫酸镁(MgSO4)结晶的影响。该研究评估了三种进料温度条件(41.8°C, 54.9°C和64.5°C),以及相应的渗透温度(19.9°C, 23.2°C和26.2°C)和流量(1.3和0.7 L/min)。实验条件表明,温度对MDCr性能和MgSO4结晶的影响比流速更大。其他离子(Na+、K+和Cl -)的存在降低了MgSO4的溶解度(与测试温度下的理论溶解度相比),增加了与NaCl共结晶的倾向,这对最终分离阶段构成了重大挑战。所研究的工艺条件(进料温度64.5±0.5,流速1.3 L/min)成功地延缓了MgSO4的结晶,使水回收率提高(65.98%),因为MgSO4在较高温度下具有较高的溶解度,从而最大限度地减少了共结晶的程度。然后通过选择性地将NaCl溶解在饱和的MgSO4溶液中来分离回收的晶体(NaCl和MgSO4的混合物)。不与渗透纯度妥协(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信