Non-Destructive and Real-Time Virtual Staining of Spermatozoa via Dark-Field Microscopy.

IF 2.3
Jiahao Wang, Xiaohua Liu, Lijun Wei, Shenghui Zhu, Siqi Zhu, Lu Han, Xinzhong Zhang
{"title":"Non-Destructive and Real-Time Virtual Staining of Spermatozoa via Dark-Field Microscopy.","authors":"Jiahao Wang, Xiaohua Liu, Lijun Wei, Shenghui Zhu, Siqi Zhu, Lu Han, Xinzhong Zhang","doi":"10.1002/jbio.202500339","DOIUrl":null,"url":null,"abstract":"<p><p>Sperm morphology serves as a crucial indicator of fertilization potential; however, the fixation and staining required for its assessment irreversibly result in irreversible damage to sperm. Here, an improved Generative Adversarial Network (GAN) virtual staining model based on dark-field microscopy enables real-time conversion of label-free semen smears into high-contrast Papanicolaou-equivalent stained images. The experimental results demonstrated that our network completed virtual staining in ~0.047 s for a 2048 × 2048 image. Furthermore, the assessment showed that the mean squared error and the structural similarity between virtual staining and true Papanicolaou staining are 0.0044 ± 0.0031 and 0.905 ± 0.015, respectively. Our network bypasses the typically labor-intensive and costly histological staining procedures, enabling real-time, non-destructive virtual staining of motile spermatozoa without the need for laboratory quality control, and paves a novel way for selection of sperm for intracytoplasmic sperm injection (ICSI).</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500339"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sperm morphology serves as a crucial indicator of fertilization potential; however, the fixation and staining required for its assessment irreversibly result in irreversible damage to sperm. Here, an improved Generative Adversarial Network (GAN) virtual staining model based on dark-field microscopy enables real-time conversion of label-free semen smears into high-contrast Papanicolaou-equivalent stained images. The experimental results demonstrated that our network completed virtual staining in ~0.047 s for a 2048 × 2048 image. Furthermore, the assessment showed that the mean squared error and the structural similarity between virtual staining and true Papanicolaou staining are 0.0044 ± 0.0031 and 0.905 ± 0.015, respectively. Our network bypasses the typically labor-intensive and costly histological staining procedures, enabling real-time, non-destructive virtual staining of motile spermatozoa without the need for laboratory quality control, and paves a novel way for selection of sperm for intracytoplasmic sperm injection (ICSI).

暗场显微镜下精子的无损实时虚拟染色。
精子形态是受精潜力的重要指标;然而,其评估所需的固定和染色不可逆地导致精子的不可逆损伤。在这里,基于暗场显微镜的改进生成对抗网络(GAN)虚拟染色模型能够将无标签精液涂片实时转换为高对比度帕帕尼科尔等效染色图像。实验结果表明,对于2048 × 2048的图像,我们的网络在~0.047 s内完成了虚拟染色。此外,评估显示虚拟染色与真Papanicolaou染色的均方误差和结构相似性分别为0.0044±0.0031和0.905±0.015。我们的网络绕过了典型的劳动密集型和昂贵的组织学染色程序,实现了实时、非破坏性的运动精子虚拟染色,而无需实验室质量控制,并为卵胞浆内单精子注射(ICSI)的精子选择铺平了新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信