Mengxia Zhao, Junfeng Wan, Yiru Wang, Yahui Zhang, Li Chen, Huiyu Li
{"title":"Exploring the Selective Potential Inhibitors for Homologous Protein BD1/BD2 with MD and AIDD Methods.","authors":"Mengxia Zhao, Junfeng Wan, Yiru Wang, Yahui Zhang, Li Chen, Huiyu Li","doi":"10.2174/0115734099386097250922062749","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The study aims to explore selective potential inhibitors for the homologous BD1/BD2 domains of bromodomain-containing protein 4 (BRD4) and uncover the binding mechanisms between these inhibitors and BD1/BD2. Given BRD4's role as an epigenetic regulator and its potential in treating triple-negative breast cancer (TNBC), overcoming the challenge of domain-specific inhibition due to the structural similarity of BD1 and BD2 is crucial.</p><p><strong>Methods: </strong>For comparison with experimental research, FL-411 was selected as a novel inhibitor for BD1/BD2. The AutoDock vina method was employed to screen potential lead compounds of BD1/BD2 from Traditional Chinese herbal medicines (TCMs) for nervous diseases. Molecular dynamics (MD) simulations were conducted to investigate the interaction mechanisms between BD1/BD2 and potential inhibitors (miltirone/FL-411).</p><p><strong>Results: </strong>The analysis shows that the inhibitors stabilize the conformation of BD1/BD2 and enhance their hydrophobic and salt-bridge interactions. Notably, atomic interaction studies reveal that the oxygen atom of FL-411 binds with E85 of BD1, while the 1,1-Dimethylcyclohexane group of miltirone binds with H437 of BD2, indicating the selective characteristics of these potential inhibitors.</p><p><strong>Discussion: </strong>The study reveals key structural determinants for BD1/BD2 selectivity, addressing a major challenge in BRD4-targeted drug design. MD simulations corroborate experimental data, validating the screening approach.</p><p><strong>Conclusion: </strong>Based on conformational characters of FL-411/miltirone and atomic interaction mechanism of BD1/BD2 and inhibitors, the potential inhibitors with a new skeleton and lower binding energy were generated with artificial intelligence drug discovery (AIDD) methods.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734099386097250922062749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The study aims to explore selective potential inhibitors for the homologous BD1/BD2 domains of bromodomain-containing protein 4 (BRD4) and uncover the binding mechanisms between these inhibitors and BD1/BD2. Given BRD4's role as an epigenetic regulator and its potential in treating triple-negative breast cancer (TNBC), overcoming the challenge of domain-specific inhibition due to the structural similarity of BD1 and BD2 is crucial.
Methods: For comparison with experimental research, FL-411 was selected as a novel inhibitor for BD1/BD2. The AutoDock vina method was employed to screen potential lead compounds of BD1/BD2 from Traditional Chinese herbal medicines (TCMs) for nervous diseases. Molecular dynamics (MD) simulations were conducted to investigate the interaction mechanisms between BD1/BD2 and potential inhibitors (miltirone/FL-411).
Results: The analysis shows that the inhibitors stabilize the conformation of BD1/BD2 and enhance their hydrophobic and salt-bridge interactions. Notably, atomic interaction studies reveal that the oxygen atom of FL-411 binds with E85 of BD1, while the 1,1-Dimethylcyclohexane group of miltirone binds with H437 of BD2, indicating the selective characteristics of these potential inhibitors.
Discussion: The study reveals key structural determinants for BD1/BD2 selectivity, addressing a major challenge in BRD4-targeted drug design. MD simulations corroborate experimental data, validating the screening approach.
Conclusion: Based on conformational characters of FL-411/miltirone and atomic interaction mechanism of BD1/BD2 and inhibitors, the potential inhibitors with a new skeleton and lower binding energy were generated with artificial intelligence drug discovery (AIDD) methods.