Catarina S Monteiro, Tiago D Ferreira, Nuno A Silva
{"title":"High-precision acoustic event monitoring in single-mode fibers using Fisher information.","authors":"Catarina S Monteiro, Tiago D Ferreira, Nuno A Silva","doi":"10.1364/OL.570619","DOIUrl":null,"url":null,"abstract":"<p><p>Polarization optical fiber sensors are based on modifications of fiber birefringence by an external measurand (e.g., strain, pressure, acoustic waves). Yet, this means that different input states of polarization will result in very distinct behaviors, which may or may not be optimal in terms of sensitivity and signal-to-noise ratio. To tackle this challenge, this manuscript presents an optimization technique for the input polarization state using the Fisher information formalism, which allows for achieving maximal precision for a statistically unbiased metric. By first measuring the variation of the Mueller matrix of the optical fiber in response to controlled acoustic perturbations induced by piezo speakers, we compute the corresponding Fisher information operator. Using maximal information states of the Fisher information, it was possible to observe a significant improvement in the performance of the sensor, increasing the signal-to-noise ratio from 4.3 to 37.6 dB, attaining an almost flat response from 1.5 kHz up to 15 kHz. As a proof-of-concept for dynamic audio signal detection, a broadband acoustic signal was also reconstructed with significant gain, demonstrating the usefulness of the introduced formalism for high-precision sensing with polarimetric fiber sensors.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 19","pages":"6117-6120"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.570619","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Polarization optical fiber sensors are based on modifications of fiber birefringence by an external measurand (e.g., strain, pressure, acoustic waves). Yet, this means that different input states of polarization will result in very distinct behaviors, which may or may not be optimal in terms of sensitivity and signal-to-noise ratio. To tackle this challenge, this manuscript presents an optimization technique for the input polarization state using the Fisher information formalism, which allows for achieving maximal precision for a statistically unbiased metric. By first measuring the variation of the Mueller matrix of the optical fiber in response to controlled acoustic perturbations induced by piezo speakers, we compute the corresponding Fisher information operator. Using maximal information states of the Fisher information, it was possible to observe a significant improvement in the performance of the sensor, increasing the signal-to-noise ratio from 4.3 to 37.6 dB, attaining an almost flat response from 1.5 kHz up to 15 kHz. As a proof-of-concept for dynamic audio signal detection, a broadband acoustic signal was also reconstructed with significant gain, demonstrating the usefulness of the introduced formalism for high-precision sensing with polarimetric fiber sensors.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.