Multi-operator-based model-driven self-supervised learning for fluorescence diffusion tomography.

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-10-01 DOI:10.1364/OL.572740
Yuxuan Jiang, Yulin Cao, Yuxiang Dou, Yujun Wu, Haofeng Xia, Wei Jiang, Fei Huang, Qiubai Li, Yong Deng
{"title":"Multi-operator-based model-driven self-supervised learning for fluorescence diffusion tomography.","authors":"Yuxuan Jiang, Yulin Cao, Yuxiang Dou, Yujun Wu, Haofeng Xia, Wei Jiang, Fei Huang, Qiubai Li, Yong Deng","doi":"10.1364/OL.572740","DOIUrl":null,"url":null,"abstract":"<p><p>Supervised learning's reliance on high-fidelity labeled data limits its application in fluorescence diffusion tomography (FDT). Here, we propose a multi-operator-based model-driven self-supervised learning (MMSL) for FDT to eliminate the need for labeled data. Our approach exploits geometrically disjoint source-detector configurations to derive two forward operators from the photon transport model while integrating the operators as dual constraints into an unrolled network architecture: one enforces output-space consistency, and the other directs network parameter optimization. Experimental results on our custom-built line-illumination FDT system demonstrate that MMSL achieves reconstruction quality comparable to supervised methods while exhibiting superior recovery of morphological features. This advancement significantly expands the practical utility of deep learning in experimental FDT scenarios lacking labeled data.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 19","pages":"6153-6156"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.572740","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Supervised learning's reliance on high-fidelity labeled data limits its application in fluorescence diffusion tomography (FDT). Here, we propose a multi-operator-based model-driven self-supervised learning (MMSL) for FDT to eliminate the need for labeled data. Our approach exploits geometrically disjoint source-detector configurations to derive two forward operators from the photon transport model while integrating the operators as dual constraints into an unrolled network architecture: one enforces output-space consistency, and the other directs network parameter optimization. Experimental results on our custom-built line-illumination FDT system demonstrate that MMSL achieves reconstruction quality comparable to supervised methods while exhibiting superior recovery of morphological features. This advancement significantly expands the practical utility of deep learning in experimental FDT scenarios lacking labeled data.

基于多算子模型驱动的荧光扩散断层扫描自监督学习。
监督学习对高保真标记数据的依赖限制了其在荧光扩散断层扫描(FDT)中的应用。在这里,我们提出了一种基于多算子的模型驱动自监督学习(MMSL)用于FDT,以消除对标记数据的需求。我们的方法利用几何上不连接的源探测器配置,从光子传输模型中导出两个前向算子,同时将算子作为双约束集成到展开的网络架构中:一个强制输出空间一致性,另一个指导网络参数优化。在我们定制的线照明FDT系统上的实验结果表明,MMSL实现了与监督方法相当的重建质量,同时表现出更好的形态特征恢复。这一进步极大地扩展了深度学习在缺乏标记数据的实验FDT场景中的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信