Davide Di Lorenzo, Nicolo Bisi, Julia Kaffy, Lisa Marie Ramirez, Markus Zweckstetter, Olivier Lequin, Irene Garfagnini, Jinghui Luo, Yvonne Hannappel, Inga Ennen, Veronica Dodero, Norbert Sewald, Maria Luisa Gelmi, Nicolo Tonali, Roland Brandt, Sandrine Ongeri
{"title":"Synthetic chaperone based on Hsp90-Tau interaction inhibits Tau aggregation and rescues physiological Tau-Microtubule interaction.","authors":"Davide Di Lorenzo, Nicolo Bisi, Julia Kaffy, Lisa Marie Ramirez, Markus Zweckstetter, Olivier Lequin, Irene Garfagnini, Jinghui Luo, Yvonne Hannappel, Inga Ennen, Veronica Dodero, Norbert Sewald, Maria Luisa Gelmi, Nicolo Tonali, Roland Brandt, Sandrine Ongeri","doi":"10.1038/s41467-025-63824-1","DOIUrl":null,"url":null,"abstract":"<p><p>The accumulation of intracellular aggregates of Tau protein is one main hallmark of Alzheimer's disease (AD) and is the consequence of Tau conformational changes, increased phosphorylation, and self-association to form fibrillar aggregates. This pathological process prevents the physiological interaction of Tau with microtubules to the detriment of the structural integrity of neurons. In healthy cells, aberrant protein misfolding and aggregation are counteracted by chaperone proteins whose protective capacity decreases with age. The role of the chaperone Hsp90 and the mechanism by which it can prevent Tau aggregation are controversial. In this work, the strategy of mimicking Hsp90 through the design of the β-hairpin like peptidomimetic β-Hsp90, inspired by two Hsp90/Tau interaction sequences, is presented. β-Hsp90 inhibits Tau aggregation both in vitro and in cells, restoring Tau's physiological interaction with microtubules. β-Hsp90, which interacts with the P1 region of Tau, is more effective than individual peptide sequences from the chaperone HSP90 and another β-hairpin mimic based on Tau sequences. Moreover, β-Hsp90 reduces AD-associated Aβ<sub>1-42</sub> aggregation, offering the development of a dual inhibitor. This work paves the way for the design of new drugs targeting devastating untreated amyloid diseases, by mimicking physiological chaperones with small synthetic peptide drugs.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8756"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63824-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The accumulation of intracellular aggregates of Tau protein is one main hallmark of Alzheimer's disease (AD) and is the consequence of Tau conformational changes, increased phosphorylation, and self-association to form fibrillar aggregates. This pathological process prevents the physiological interaction of Tau with microtubules to the detriment of the structural integrity of neurons. In healthy cells, aberrant protein misfolding and aggregation are counteracted by chaperone proteins whose protective capacity decreases with age. The role of the chaperone Hsp90 and the mechanism by which it can prevent Tau aggregation are controversial. In this work, the strategy of mimicking Hsp90 through the design of the β-hairpin like peptidomimetic β-Hsp90, inspired by two Hsp90/Tau interaction sequences, is presented. β-Hsp90 inhibits Tau aggregation both in vitro and in cells, restoring Tau's physiological interaction with microtubules. β-Hsp90, which interacts with the P1 region of Tau, is more effective than individual peptide sequences from the chaperone HSP90 and another β-hairpin mimic based on Tau sequences. Moreover, β-Hsp90 reduces AD-associated Aβ1-42 aggregation, offering the development of a dual inhibitor. This work paves the way for the design of new drugs targeting devastating untreated amyloid diseases, by mimicking physiological chaperones with small synthetic peptide drugs.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.