Rebecca Andrews, Bin Fu, Christina E Toomey, Jonathan C Breiter, Joanne Lachica, Joseph S Beckwith, Ru Tian, Emma E Brock, Lisa-Maria Needham, Gregory J Chant, Camille Loiseau, Angèle Deconfin, Kenza Baspin, Rebeka Popovic, James Evans, Yen Goh, Begüm Kurt, Lenart Senicar, Marisa Edmonds, Tim Bartels, Nora Bengoa-Vergniory, Peter J Magill, Zane Jaunmuktane, Oliver J Freeman, Benjamin J M Taylor, John Hardy, Tammaryn Lashley, Mina Ryten, Michele Vendruscolo, Nicholas W Wood, Lucien E Weiss, Sonia Gandhi, Steven F Lee
{"title":"Large-scale visualization of α-synuclein oligomers in Parkinson's disease brain tissue.","authors":"Rebecca Andrews, Bin Fu, Christina E Toomey, Jonathan C Breiter, Joanne Lachica, Joseph S Beckwith, Ru Tian, Emma E Brock, Lisa-Maria Needham, Gregory J Chant, Camille Loiseau, Angèle Deconfin, Kenza Baspin, Rebeka Popovic, James Evans, Yen Goh, Begüm Kurt, Lenart Senicar, Marisa Edmonds, Tim Bartels, Nora Bengoa-Vergniory, Peter J Magill, Zane Jaunmuktane, Oliver J Freeman, Benjamin J M Taylor, John Hardy, Tammaryn Lashley, Mina Ryten, Michele Vendruscolo, Nicholas W Wood, Lucien E Weiss, Sonia Gandhi, Steven F Lee","doi":"10.1038/s41551-025-01496-4","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative condition characterized by the presence of intraneuronal aggregates containing fibrillar ɑ-synuclein known as Lewy bodies. These large end-stage species are formed by smaller soluble protein nanoscale assemblies, often termed oligomers, which are proposed as early drivers of pathogenesis. Until now, this hypothesis has remained controversial, at least in part because it has not been possible to directly visualize nanoscale assemblies in human brain tissue. Here we present Advanced Sensing of Aggregates-Parkinson's Disease, an imaging method to generate large-scale α-synuclein aggregate maps in post-mortem human brain tissue. We combined autofluorescence suppression with single-molecule fluorescence microscopy, which together enable the detection of nanoscale α-synuclein aggregates. To demonstrate the use of this platform, we analysed ~1.2 million nanoscale aggregates from the anterior cingulate cortex in human post-mortem brain samples from patients with PD and healthy controls. Our data reveal a disease-specific shift in a subpopulation of nanoscale assemblies that represent an early feature of the proteinopathy that underlies PD. We anticipate that quantitative information about this distribution provided by Advanced Sensing of Aggregates-Parkinson's Disease will enable mechanistic studies to reveal the pathological processes caused by α-synuclein aggregation.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01496-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by the presence of intraneuronal aggregates containing fibrillar ɑ-synuclein known as Lewy bodies. These large end-stage species are formed by smaller soluble protein nanoscale assemblies, often termed oligomers, which are proposed as early drivers of pathogenesis. Until now, this hypothesis has remained controversial, at least in part because it has not been possible to directly visualize nanoscale assemblies in human brain tissue. Here we present Advanced Sensing of Aggregates-Parkinson's Disease, an imaging method to generate large-scale α-synuclein aggregate maps in post-mortem human brain tissue. We combined autofluorescence suppression with single-molecule fluorescence microscopy, which together enable the detection of nanoscale α-synuclein aggregates. To demonstrate the use of this platform, we analysed ~1.2 million nanoscale aggregates from the anterior cingulate cortex in human post-mortem brain samples from patients with PD and healthy controls. Our data reveal a disease-specific shift in a subpopulation of nanoscale assemblies that represent an early feature of the proteinopathy that underlies PD. We anticipate that quantitative information about this distribution provided by Advanced Sensing of Aggregates-Parkinson's Disease will enable mechanistic studies to reveal the pathological processes caused by α-synuclein aggregation.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.