Intrinsic metal-support interactions break the activity-stability dilemma in electrocatalysis.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Lingxi Zhou, Menghao Yang, Yihong Liu, Feiyu Kang, Ruitao Lv
{"title":"Intrinsic metal-support interactions break the activity-stability dilemma in electrocatalysis.","authors":"Lingxi Zhou, Menghao Yang, Yihong Liu, Feiyu Kang, Ruitao Lv","doi":"10.1038/s41467-025-63397-z","DOIUrl":null,"url":null,"abstract":"<p><p>Electrocatalysis plays a central role in clean energy conversion and sustainable technologies. However, the trade-off between activity and stability of electrocatalysts largely hinders their practical applications, notably in the oxygen evolution reaction for producing hydrogen and solar fuels. Here we report a steam-assisted synthesis armed with machine learning screening of an integrated Ru/TiMnO<sub>x</sub> electrode, featuring intrinsic metal-support interactions. These atomic-scale interactions with self-healing capabilities radically address the activity-stability dilemma across all pH levels. Consequently, the Ru/TiMnO<sub>x</sub> electrode demonstrate enhanced mass activities-48.5×, 112.8×, and 74.6× higher than benchmark RuO<sub>2</sub> under acidic, neutral, and alkaline conditions, respectively. Notably, it achieves stable operation for up to 3,000 h, representing a multi-fold stability improvement comparable to other state-of-the-art catalysts. The breakthrough in activity-stability limitations highlights the potential of intrinsic metal-support interactions for enhancing electrocatalysis and heterogeneous catalysis in diverse applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8739"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63397-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalysis plays a central role in clean energy conversion and sustainable technologies. However, the trade-off between activity and stability of electrocatalysts largely hinders their practical applications, notably in the oxygen evolution reaction for producing hydrogen and solar fuels. Here we report a steam-assisted synthesis armed with machine learning screening of an integrated Ru/TiMnOx electrode, featuring intrinsic metal-support interactions. These atomic-scale interactions with self-healing capabilities radically address the activity-stability dilemma across all pH levels. Consequently, the Ru/TiMnOx electrode demonstrate enhanced mass activities-48.5×, 112.8×, and 74.6× higher than benchmark RuO2 under acidic, neutral, and alkaline conditions, respectively. Notably, it achieves stable operation for up to 3,000 h, representing a multi-fold stability improvement comparable to other state-of-the-art catalysts. The breakthrough in activity-stability limitations highlights the potential of intrinsic metal-support interactions for enhancing electrocatalysis and heterogeneous catalysis in diverse applications.

固有的金属-载体相互作用打破了电催化中活性-稳定性的困境。
电催化在清洁能源转化和可持续技术中发挥着核心作用。然而,电催化剂的活性和稳定性之间的权衡在很大程度上阻碍了它们的实际应用,特别是在生产氢和太阳能燃料的析氧反应中。在这里,我们报告了一种蒸汽辅助合成,结合机器学习筛选集成Ru/TiMnOx电极,具有固有的金属支持相互作用。这些具有自我修复能力的原子级相互作用从根本上解决了所有pH值水平下的活性-稳定性难题。因此,在酸性、中性和碱性条件下,Ru/TiMnOx电极的质量活性分别比基准RuO2高48.5倍、112.8倍和74.6倍。值得注意的是,它可以稳定运行长达3000小时,与其他最先进的催化剂相比,稳定性提高了好几倍。活性-稳定性限制的突破突出了内在金属支撑相互作用在各种应用中增强电催化和多相催化的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信