Emmanouil Kyriakakis, Chiara Medde, Danilo Ritz, Geoffrey Fucile, Alexander Schmidt, Anne Spang
{"title":"Bacterial RNA promotes proteostasis through inter-tissue communication in C. elegans.","authors":"Emmanouil Kyriakakis, Chiara Medde, Danilo Ritz, Geoffrey Fucile, Alexander Schmidt, Anne Spang","doi":"10.1038/s41467-025-63987-x","DOIUrl":null,"url":null,"abstract":"<p><p>Life expectancy has been increasing over the last decades, which is not matched by an increase in healthspan. Besides genetic composition, environmental and nutritional factors influence both health- and lifespan. Diet is thought to be a major factor for healthy ageing. Here, we show that dietary RNA species improve proteostasis in C. elegans. Inherent bacterial-derived double stranded RNA reduces protein aggregation in a C. elegans muscle proteostasis model. This beneficial effect depends on low levels of systemic selective autophagy, the RNAi machinery in the germline, even when the RNA is delivered through ingestion in the intestine and the integrity of muscle cells. Our data suggest a requirement of inter-organ communication between the intestine, the germline and muscles. Our results demonstrate that bacterial-derived RNAs elicit a systemic response in C. elegans, which protects the animal from protein aggregation during ageing, which might extend healthspan.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8650"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63987-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Life expectancy has been increasing over the last decades, which is not matched by an increase in healthspan. Besides genetic composition, environmental and nutritional factors influence both health- and lifespan. Diet is thought to be a major factor for healthy ageing. Here, we show that dietary RNA species improve proteostasis in C. elegans. Inherent bacterial-derived double stranded RNA reduces protein aggregation in a C. elegans muscle proteostasis model. This beneficial effect depends on low levels of systemic selective autophagy, the RNAi machinery in the germline, even when the RNA is delivered through ingestion in the intestine and the integrity of muscle cells. Our data suggest a requirement of inter-organ communication between the intestine, the germline and muscles. Our results demonstrate that bacterial-derived RNAs elicit a systemic response in C. elegans, which protects the animal from protein aggregation during ageing, which might extend healthspan.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.