Ru Jia, Yan Xin, Mark Potter, Jie Jiang, Zixu Wang, Hanxue Ma, Zhihao Zhang, Zhizhuo Liang, Lifu Zhang, Zonghuan Lu, Ruizhe Yang, Saloni Pendse, Yang Hu, Kai Peng, Yilin Meng, Wei Bao, Jun Liu, Gwo-Ching Wang, Toh-Ming Lu, Yunfeng Shi, Hanwei Gao, Jian Shi
{"title":"Long-distance remote epitaxy.","authors":"Ru Jia, Yan Xin, Mark Potter, Jie Jiang, Zixu Wang, Hanxue Ma, Zhihao Zhang, Zhizhuo Liang, Lifu Zhang, Zonghuan Lu, Ruizhe Yang, Saloni Pendse, Yang Hu, Kai Peng, Yilin Meng, Wei Bao, Jun Liu, Gwo-Ching Wang, Toh-Ming Lu, Yunfeng Shi, Hanwei Gao, Jian Shi","doi":"10.1038/s41586-025-09484-z","DOIUrl":null,"url":null,"abstract":"<p><p>Remote epitaxy, in which an epitaxial relation is established between a film and a substrate through remote interactions, enables the development of high-quality single crystalline epilayers and their transfer to and integration with other technologically crucial substates<sup>1,2</sup>. It is commonly believed that in remote epitaxy, the distance within which the remote interaction can play a leading part in the epitaxial process is less than 1 nm, as the atomically resolved fluctuating electric potential decays very rapidly to a negligible value after a few atomic distances<sup>3</sup>. Here we show that it is possible to achieve remote epitaxy when the epilayer-substrate distance is as large as 2-7 nm. We experimentally demonstrate long-distance remote epitaxy of CsPbBr<sub>3</sub> film on an NaCl substrate, KCl film on a KCl substrate and ZnO microrods on GaN, and show that a dislocation in the GaN substrate exists immediately below every remotely epitaxial ZnO microrod. These findings indicate that remote epitaxy could be designed and engineered by means of harnessing defect-mediated long-distance remote interactions.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":" ","pages":""},"PeriodicalIF":48.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-09484-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Remote epitaxy, in which an epitaxial relation is established between a film and a substrate through remote interactions, enables the development of high-quality single crystalline epilayers and their transfer to and integration with other technologically crucial substates1,2. It is commonly believed that in remote epitaxy, the distance within which the remote interaction can play a leading part in the epitaxial process is less than 1 nm, as the atomically resolved fluctuating electric potential decays very rapidly to a negligible value after a few atomic distances3. Here we show that it is possible to achieve remote epitaxy when the epilayer-substrate distance is as large as 2-7 nm. We experimentally demonstrate long-distance remote epitaxy of CsPbBr3 film on an NaCl substrate, KCl film on a KCl substrate and ZnO microrods on GaN, and show that a dislocation in the GaN substrate exists immediately below every remotely epitaxial ZnO microrod. These findings indicate that remote epitaxy could be designed and engineered by means of harnessing defect-mediated long-distance remote interactions.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.