Sodium alginate piezoelectric hydrogel loaded with extracellular vesicles derived from bone marrow mesenchymal stem cells promotes repair of Achilles tendon rupture.

IF 12.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ao Duan, Bingqing Lin, Zhencheng Xiong, Xiaolong Shao, Wenzheng Liu, Renliang Zhao, Xiangtian Deng, Chaoyi Zhang, Dong Wang, Zilu Ge, Xiaoran Hu, Wei Lin, Shouye Hu, Guanglin Wang
{"title":"Sodium alginate piezoelectric hydrogel loaded with extracellular vesicles derived from bone marrow mesenchymal stem cells promotes repair of Achilles tendon rupture.","authors":"Ao Duan, Bingqing Lin, Zhencheng Xiong, Xiaolong Shao, Wenzheng Liu, Renliang Zhao, Xiangtian Deng, Chaoyi Zhang, Dong Wang, Zilu Ge, Xiaoran Hu, Wei Lin, Shouye Hu, Guanglin Wang","doi":"10.1186/s12951-025-03606-5","DOIUrl":null,"url":null,"abstract":"<p><p>Accelerated repair of Achilles tendon rupture and prevention of re-rupture continue to pose significant technical challenges in orthopedic surgery and rehabilitation. Extracellular vesicles (EVs) derived from bone marrow mesenchymal stem cells exhibit substantial therapeutic potential for various degenerative diseases and tissue regeneration. However, the use of EVs alone for repairing ruptured Achilles tendons requires multiple invasive administrations, such as repeated injections, to maintain a therapeutic effect, which increases patient discomfort and the risk of infection. In this study, we innovatively combined EVs with sodium alginate-based piezoelectric hydrogel (SPH) to develop SPH-EVs. By leveraging the slow degradation of SPH in vivo, SPH-EVs enable sustained-release of EVs while generating electrical stimulation, ensuring that an effective therapeutic concentration is maintained at the Achilles tendon fracture site. Additionally, the integrated near-field communication (NFC) module within SPH-EVs allows for real-time monitoring of rehabilitation exercise intensity in the affected area, guiding patients to conduct rehabilitation training within a safe range and minimizing the risk of re-rupture.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"625"},"PeriodicalIF":12.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486638/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03606-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accelerated repair of Achilles tendon rupture and prevention of re-rupture continue to pose significant technical challenges in orthopedic surgery and rehabilitation. Extracellular vesicles (EVs) derived from bone marrow mesenchymal stem cells exhibit substantial therapeutic potential for various degenerative diseases and tissue regeneration. However, the use of EVs alone for repairing ruptured Achilles tendons requires multiple invasive administrations, such as repeated injections, to maintain a therapeutic effect, which increases patient discomfort and the risk of infection. In this study, we innovatively combined EVs with sodium alginate-based piezoelectric hydrogel (SPH) to develop SPH-EVs. By leveraging the slow degradation of SPH in vivo, SPH-EVs enable sustained-release of EVs while generating electrical stimulation, ensuring that an effective therapeutic concentration is maintained at the Achilles tendon fracture site. Additionally, the integrated near-field communication (NFC) module within SPH-EVs allows for real-time monitoring of rehabilitation exercise intensity in the affected area, guiding patients to conduct rehabilitation training within a safe range and minimizing the risk of re-rupture.

海藻酸钠压电水凝胶负载来自骨髓间充质干细胞的细胞外囊泡促进跟腱断裂的修复。
跟腱断裂的加速修复和预防再次断裂在骨科手术和康复中仍然是一个重大的技术挑战。来源于骨髓间充质干细胞的细胞外囊泡(EVs)在各种退行性疾病和组织再生中显示出巨大的治疗潜力。然而,单独使用ev修复断裂的跟腱需要多次侵入性给药,如重复注射,以保持治疗效果,这增加了患者的不适和感染风险。在这项研究中,我们创新地将电动汽车与海藻酸钠基压电水凝胶(SPH)结合在一起,开发了SPH-电动汽车。通过利用SPH在体内的缓慢降解,SPH- ev能够在产生电刺激的同时持续释放EVs,确保在跟腱骨折部位维持有效的治疗浓度。此外,sph - ev内置的集成近场通信(NFC)模块可以实时监测患处的康复运动强度,指导患者在安全范围内进行康复训练,最大限度地降低再次破裂的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信