Martin Saballus, Lucas Nik Reger, Robin Obser, Julia Niemann, Rene H Wijffels, Dirk E Martens, Markus Kampmann
{"title":"Viable cell sorting by fluidized bed centrifugation enables novel cultivation strategies.","authors":"Martin Saballus, Lucas Nik Reger, Robin Obser, Julia Niemann, Rene H Wijffels, Dirk E Martens, Markus Kampmann","doi":"10.3389/fbioe.2025.1667343","DOIUrl":null,"url":null,"abstract":"<p><p>In biopharmaceutical manufacturing, continuous perfusion cultivation enables high space-time yields and increased plant utilization, which are critical targets for modern upstream process intensification. However, filter-based cell retention devices, utilized in these processes, have significant disadvantages: Significant sieving effects and the risk of filter blockage alongside the retention of harmful substances and non-viable cells, represent a major challenge and often reduce the viability of the culture. To enable the next-generation of continuous processes, novel cell retention strategies are required. Therefore, the aim of this study was to develop an approach for large-scale sorting of viable and non-viable cells and to investigate its applicability for novel continuous cultivation strategies. To remove non-viable cells and thus to enrich viable cells in the culture, a single-use fluidized bed centrifuge (FBC) was used, which is usually applied for concentration and washing of mammalian cells. A novel FBC method was introduced by overloading the centrifuge chambers that allows high throughput sorting depending on the culture´s viability. The impact of the sorting on the subsequent cultivation and productivity of the cells was investigated in a multi-parallel 15 mL bioreactor setup. Cell sorting after regular fed-batch cultivation showed +14% increase of viability, continued cell growth, and thus +13% higher titers. Thereafter, periodic cell sorting was tested on a 5-L scale bioreactor, combining the advantageous characteristics of fed-batch and perfusion cultivation. The feasibility was successfully demonstrated for 20 days, achieving a high average space-time yield of 0.75 g/L/d. In both cultivation trials, up to +38% higher cell specific antibody productivities were found after cell sorting. Overall, the FBC sorting method in combination with innovative cultivation concepts addresses current limitations and challenges of continuous biopharmaceutical manufacturing and has great potential to further advance modern process intensification.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1667343"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12481202/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1667343","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In biopharmaceutical manufacturing, continuous perfusion cultivation enables high space-time yields and increased plant utilization, which are critical targets for modern upstream process intensification. However, filter-based cell retention devices, utilized in these processes, have significant disadvantages: Significant sieving effects and the risk of filter blockage alongside the retention of harmful substances and non-viable cells, represent a major challenge and often reduce the viability of the culture. To enable the next-generation of continuous processes, novel cell retention strategies are required. Therefore, the aim of this study was to develop an approach for large-scale sorting of viable and non-viable cells and to investigate its applicability for novel continuous cultivation strategies. To remove non-viable cells and thus to enrich viable cells in the culture, a single-use fluidized bed centrifuge (FBC) was used, which is usually applied for concentration and washing of mammalian cells. A novel FBC method was introduced by overloading the centrifuge chambers that allows high throughput sorting depending on the culture´s viability. The impact of the sorting on the subsequent cultivation and productivity of the cells was investigated in a multi-parallel 15 mL bioreactor setup. Cell sorting after regular fed-batch cultivation showed +14% increase of viability, continued cell growth, and thus +13% higher titers. Thereafter, periodic cell sorting was tested on a 5-L scale bioreactor, combining the advantageous characteristics of fed-batch and perfusion cultivation. The feasibility was successfully demonstrated for 20 days, achieving a high average space-time yield of 0.75 g/L/d. In both cultivation trials, up to +38% higher cell specific antibody productivities were found after cell sorting. Overall, the FBC sorting method in combination with innovative cultivation concepts addresses current limitations and challenges of continuous biopharmaceutical manufacturing and has great potential to further advance modern process intensification.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.